• Title/Summary/Keyword: Polarizability

Search Result 123, Processing Time 0.022 seconds

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Microwave Dielectric Properties of (Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 Ceramics ((Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 세라믹스의 마이크로파 유전 특성)

  • Ju Hye Kim;Si Hyun Kim;Eung Soo Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.330-336
    • /
    • 2023
  • The effects of Ni2+ substitution for Mg2+-sites on the microwave dielectric properties of (Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 (0.01 ≤ x ≤ 0.05) (MNTMT) ceramics were investigated. MNTMT ceramics were prepared by conventional solid-state reaction. When the MgO / TiO2 ratio was changed from 1.00 to 1.02, MgTi2O5 was detected as a secondary phase along with the MgTiO3 main phase in the MNTMT specimens sintered at 1,400 ℃ for 4h. For the MNTMT specimens with MgO / TiO2 = 1.07 sintered at 1,400 ℃ for 4h, a single phase of MgTiO3 with an ilmenite structure was obtained from the entire range of compositions. The relative density of all the specimens sintered at 1,400 ℃ for 4h was higher than 95 %. The quality factor (Qf) of the sintered specimens depended strongly on the degree of covalency of the specimens, and the sintered specimens with x = 0.01 showed the maximum Qf value of 489,400 GHz. The dielectric constant (K) decreased with increasing Ni2+ content because Ni2+ had a lower dielectric polarizability (1.23Å3) than Mg2+ (1.32Å3). As Ni2+ content increased, the temperature coefficient of resonant frequency (TCF) improved, from -55.56 to -21.85 ppm/℃, due to the increase in tolerance factor (t) and the lower dielectric constant (K).

Determination of Reactivities by Molecular Orbital Theory (V). Sigma Molecular Orbital Treatment of $S_N$ Reactivities of Alkylchlorides. (화학반응성의 분자궤도론적 연구 (제5보). 염화알킬의 친핵성치환 반응성에 대한 시그마 분자궤도론적 연구)

  • Ikchoon Lee;Bon-Su Lee;Kwang-Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 1973
  • Ground electronic structures and SNreactivities of a series of alkylchlorides (methyl,ethyl, iso-propyl, trans n-butyl, sec-butyl, tert-butylchloride) have been studied using approximate $({\sigma}-MO)$ method, such as EHT and CNDO/2. It was found that CNDO/2 gives better results for the systems such as alkylchlorides whose structural differences are not remarkable, in comparison with EHT method. According to CNDO/2 results, calculated dipole moments for alkylchlorides are slightly higher than observed values, showing the order of primary < secondary < tertiary alkylchlorides. It was also found that highest occupied(HO) MO's are completely or nearly degenerate, and show relatively weak $\pi$-antibonding nature between$\alpha$-carbon and Cl atoms. Furthermore, the electrons in this MO are largely confined to Cl atom, and hence these behaves as likely as p-lone pair electrons of Cl atom. On the contrary, lowest unoccupied (LU) MO's show strong $\sigma$-antibonding nature between $\alpha$-carbon and Cl atoms whose electron clouds are directed along the C-Cl axis. It has been discussed that the$S_N2$ reactivities of alkylchlorides may largely be controlled by ${\sigma}^{\ast}$ LUMO, and the antibonding strength between $\alpha$-carbon and Cl atoms in this MO may become the measure of $S_N2$reactivity. The relationship between $S_N2$reactivity and C-Cl bond polarizability has also been discussed. It has been suggested that the unique structure factors determining $S_N1$reactivities may be $\pi$-antibonding strength between $\alpha$-carbon and Cl atoms in HOMO and C-Cl bond strength in ground state.

  • PDF