• Title/Summary/Keyword: Polar regions

Search Result 224, Processing Time 0.02 seconds

Limitations of National Responsibility and its Application on Marine Environmental Pollution beyond Borders -Focused on the Effects of China's Three Gorges Dam on the Marine Environment in the East China Sea- (국경을 넘는 해양환경오염에 대한 국가책임과 적용의 한계 -중국의 산샤댐 건설로 인한 동중국해 해양환경 영향을 중심으로-)

  • Yang, Hee Cheol
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.341-356
    • /
    • 2015
  • A nation has a sovereign right to develop and use its natural resources according to its policies with regard to development and the relevant environment. A nation also has an obligation not to harm other countries or damage environments of neighboring countries as consequences of such actions of developments or use of natural resources. However, international precedents induce a nation to take additional actions not to cause more damages from the specific acts causing environmental damages beyond national borders, when such acts have economic and social importance. That is to say that there is a tendency to resolve such issues in a way to promote the balance between the mutual interests by allowing such actions to continue. A solution to China's Three Gorges Dam dilemma based on a soft law approach is more credible than relying on a good faith approach of national responsibilities and international legal proceedings since the construction and operation of the dam falls within the category of exercising national sovereign rights. If a large scale construction project such as the Three Gorges Dam or operation of a nuclear power plant causes or may cause environmental damage beyond the border of a nation engaged in such an undertaking, countries affected by this undertaking should jointly monitor the environmental effects in a spirit of cooperation rather than trying to stop the construction and should seek cooperative solutions of mutual understanding to establish measures to prevent further damages. If China's Three Gorges Dam construction and operation cause or contain the possibility of causing serious damages to marine environment, China cannot set aside its national responsibility to meet international obligations if China is aware of or knows about the damage that has occurred or may occur but fail to prevent, minimize, reverse or eliminate additional chances of such damages, or fails to put in place measures in order to prevent the recurrence of such damages. However, Korea must be able to prove a causal relationship between the relevant actions and resulting damages if it is to raise objections to the construction or request certain damage-prevention actions against crucial adverse effects on the marine environment out of respect for China's right to develop resources and acts of use thereof. Therefore, it is essential to cumulate continuous monitoring and evaluations information pertaining to marine environmental changes and impacts or responses of affected waters as well as acquisition of scientific baseline data with observed changes in such baseline. As China has adopted a somewhat nonchalant attitude toward taking adequate actions to protect against marine pollution risks or adverse effects caused by the construction and operation of China's Three Gorges Dam, there is a need to persuade China to adopt a more active stance and become involved in the monitoring and co-investigation of the Yellow Sea in order to protect the marine environment. Moreover, there is a need to build a regular environmental monitoring system that includes the evaluation of environmental effects beyond borders. The Espoo Convention can serve as a mechanism to ease potential conflicts of national interest in the Northeast Asian waters where political and historical sensitivities are acute. Especially, the recent diplomatic policy advanced by Korea and China can be implemented as an important example of gentle cooperation as the policy tool of choice is based on regional cooperation or cooperation between different regions.

Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by using DDInSAR Imagery (DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석)

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.933-944
    • /
    • 2019
  • This study analyzes the tide deformation of land boundary regions on the east (Region A) and west (Region B) sides of the Ross Ice Shelf in Antarctica using Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR). A total of seven Sentinel-1A SAR images acquired in 2015-2016 were used to estimate the accuracy of tide prediction model and Young's modulus of ice shelf. First, we compared the Ross Sea Height-based Tidal Inverse (Ross_Inv) model, which is a representative tide prediction model for the Antarctic Ross Sea, with the tide deformation of the ice shelf extracted from the DDInSAR image. The accuracy was analyzed as 3.86 cm in the east region of Ross Ice Shelf and it was confirmed that the inverse barometric pressure effect must be corrected in the tide model. However, in the east, it is confirmed that the tide model may be inaccurate because a large error occurs even after correction of the atmospheric effect. In addition, the Young's modulus of the ice was calculated on the basis of the one-dimensional elastic beam model showing the correlation between the width of the hinge zone where the tide strain occurs and the ice thickness. For this purpose, the grounding line is defined as the line where the displacement caused by the tide appears in the DDInSAR image, and the hinge line is defined as the line to have the local maximum/minimum deformation, and the hinge zone as the area between the two lines. According to the one-dimensional elastic beam model assuming a semi-infinite plane, the width of the hinge region is directly proportional to the 0.75 power of the ice thickness. The width of the hinge zone was measured in the area where the ground line and the hinge line were close to the straight line shown in DDInSAR. The linear regression analysis with the 0.75 power of BEDMAP2 ice thickness estimated the Young's modulus of 1.77±0.73 GPa in the east and west of the Ross Ice Shelf. In this way, more accurate Young's modulus can be estimated by accumulating Sentinel-1 images in the future.

Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022 (GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로)

  • Jinyeong Kim;Soyeong Jang;Jaeyeop Kwon;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1651-1669
    • /
    • 2023
  • Sea ice currently covers approximately 7% of the world's ocean area, primarily concentrated in polar and high-altitude regions, subject to seasonal and annual variations. It is very important to analyze the area and type classification of sea ice through time series monitoring because sea ice is formed in various types on a large spatial scale, and oil and gas exploration and other marine activities are rapidly increasing. Currently, research on the type and area of sea ice is being conducted based on high-resolution satellite images and field measurement data, but there is a limit to sea ice monitoring by acquiring field measurement data. High-resolution optical satellite images can visually detect and identify types of sea ice in a wide range and can compensate for gaps in sea ice monitoring using Geostationary Ocean Color Imager-II (GOCI-II), an ocean satellite with short time resolution. This study tried to find out the possibility of utilizing sea ice monitoring by training a rule-based machine learning model based on learning data produced using high-resolution optical satellite images and performing detection on GOCI-II images. Learning materials were extracted from Liaodong Bay in the Bohai Sea from 2021 to 2022, and a Random Forest (RF) model using GOCI-II was constructed to compare qualitative and quantitative with sea ice areas obtained from existing normalized difference snow index (NDSI) based and high-resolution satellite images. Unlike NDSI index-based results, which underestimated the sea ice area, this study detected relatively detailed sea ice areas and confirmed that sea ice can be classified by type, enabling sea ice monitoring. If the accuracy of the detection model is improved through the construction of continuous learning materials and influencing factors on sea ice formation in the future, it is expected that it can be used in the field of sea ice monitoring in high-altitude ocean areas.

Yeoheon's Recognition of Geography and the Significance of the Compilation of Geographical Records by His Disciples (여헌(旅軒) 장현광(張顯光)의 지리인식(地理認識)과 문인(門人)들의 지지편찬(地誌編纂) 의의)

  • Choi, Wonsuk
    • (The)Study of the Eastern Classic
    • /
    • no.49
    • /
    • pp.73-107
    • /
    • 2012
  • Yeoheon Jang Hyeongwang(1554-1637), one of the greatest Mid-Joseon Confucianists did systematic studies on universe and nature. It can be considered that he inherited the academic tradition of Cho Sik (曺植) and Jeong Gu(鄭逑) and followed their steps of fengshui (風水) and compilation of geographical records. His living and thought and deserve researching with regard to geographical studies. This paper attempts to analyze Yeoheon's recognition of geography in general. In other words, I shall prove that his view of geography is Neo-Confucian. At the same time, I shall discuss how he named people's residence, how he understanded the Joseon territory, what he thought about fengshui, and what significance the complication of geographical records by his disciples had. Yeoheon considered that land is composed of water, fire, earth, and rock, and understanded the land according to the theory of Zhouyi (周易). He analyzed geographic environments by the system of Zhouyi. His study of geography is basically intended for practical use, and as a result is necessary for people to choose where to live and where to cultivate. In his opinion, it is essential to divide the land of the Joseon by means of geographical differences in order to help people to find a better place to live. We can see his Confucian view from the fact that he placed a greater emphasis on human beings over nature. Therefore, the practical use for humans is the first priority in his study of geography. Meanwhile, he considered nature itself as only the object of study. He realized the vitality of life by making a close observation of nature and attained the mind of the Heaven and Earth in a detached way. He, as a follower of Neo-Confucianism, enjoyed the land by feeling comfortable with his present status and by being satisfied with himself. He put his Confucian view of universe and world into practice in his life. As a part of his efforts, he named his residence and surrounding natural environments with the polar star and 28 stars, and accordingly they are reconstructed in a system of universe. The Confucian tradition of dongcheon gugok (洞天九曲) starting with Zhu Xi's administration of wuyi jiugu (武夷九曲) was widely prevalent during the Joseon period, but Yeoheon's system of organizing places is original. His sense of naming places reflects his ideas of following his predecessors, comparing natural objects to human emotions, and desiring to live in retirement. Yeoheon understanded the Joseon territory with comparison of the Chinese land. He expressed his knowledge in the form of changing geographical features of a district, appreciating natural beauty, locating towns, and being familiar with a region, and proposing his own climatology and view of the reality. His recognition of the Joseon territory resolves itself into the following several points. He regarded the Joseon territory as one organism, and considered the territory to be composed of ki (氣) as Neo-Confucianists usually do. In addition, he understanded not only natural environments but also towns from a perspective of the fengshui and adopted a comparative methodology in dividing regions. He also applied climatology to analyze persons and customs. He employed the methodology of fengshui from the comprehensive theory of the Yijing. It is because he was influenced by Cho Sik and Jeng Gu. Yeoheon chose dwelling places for people, or gave advice on several places of his hometown relying on his knowledge of fengshui. When it comes to his theory of fengshui, he agreed with the theory of topography with regards to the fengshui of tombs, but criticized the custom of delaying funerals in order to turn fortune in one's favor. In addition, he accepted that it is necessary to complement a town by creating forests around it. We need to pay attention to the fact that Yeoheon's disciples complied several geographical records. It proves that they inherited the tradition of "valuing practical use and governing on behalf of the people" from Cho Sik and Jeong Gu. Yeoheon put a great emphasis on geographical records and encouraged his disciples to compile them. In other words, he emphasized that they, as administrator or intellectual, need to be erudite in the history and custom of a region where they have lived, and have to establish a standard to encourage or warn people in the region while considering the geographical records. His opinion functioned as a guideline for his successors to compile geographical records later. This paper only analyzed several facts with regard to Yeoheon's knowledge of geography and an academic tradition concerning the study of geography. In the future, I shall discuss how his predecessors and successors understanded geography and how the tradition of compiling geographical records was transferred and developed between them. I believe that this study will contribute to establishing the history of geography, which the Joseon Confucianists researched for a long time but we have not paid an enough attention to until now.