• Title/Summary/Keyword: Polar Region

Search Result 372, Processing Time 0.032 seconds

Oxygen-18 and Nutrients in the Surface Waters of the Bransfield Strait, Antarctica during Austral Summer 1990/91 (1990/91년 남극하계 브렌스필드 해협 표층해수의 $\delta$/SUP 18/O와 영양염 분포)

  • KANG, DONG-JIN;CHUNG, CHANG SOO;COOPER, LEE W.;KANG, CHEONG YOON;KIM, YEA DONG;HONG, GI HOON
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.250-258
    • /
    • 1992
  • The oxygen isotope composition of surface waters in the Bransfield Strait was determined as one extra state variable in order to characterize water masses in the region, since salinity is significantly modified due to the freezing and ice-melting in the polar region. The salinity, temperature, and $\delta$/SUP 18/O values vary from 34.0 to 34.5$\textperthousand$, -.05 to 2.1$^{\circ}C$ and -0.50 t -0.26$\textperthousand$, respectively. The combined effects of evaporation, precipitation, freezing, ice-melting are reflected in the widely scattered data. Although it is small, the distribution of $\delta$/SUP 18/O of the Bransfield Strait is strongly affected by the freezing-ice melting rather than the evaporation-precipitation. The ice melted fresh water which has higher temperature, depleted salinity and nutrients may be injected to the Bransfield Strait from the north. The concentrations of nutrients are decreasing gradually from the north to the south. The waters were characterized by two groups of higher (about 19.4) and lower N/P ratio (about 16.7). The lower N/P ratio is found in the northern part where ice-melted fresh water is injected. and the higher N/P ratio is found in the southern part of the Bransfield Strait. Although more precise work is needed, the deference of N/P ratio can be an evidence of the ice melted water injection to the Bransfield Strait. Chlorophyll a concentrations, in general, increase from northwest (Waddell Sea) to the southeast (Smith and Hosseason Islands). Probably the injection of nutrient depleted fresh water from the ice melting reduce the chlorophyll a concentration.

  • PDF

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses (동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계)

  • Rho, TaeKeun;Lee, Tongsup;Kim, Guebuem;Chang, Kyung-Il;Na, TaeHee;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.413-430
    • /
    • 2012
  • To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.

Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations (GEMS 위성관측에 기반한 지면반사도 산출 시에 오차 유발 변수에 대한 민감도 실험)

  • Shin, Hee-Woo;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • The information of surface reflectance ($R_{sfc}$) is important for the heat balance and the environmental/climate monitoring. The $R_{sfc}$ sensitivity to error-induced variables for the Geostationary Environment Monitoring Spectrometer (GEMS) retrieval from geostationary-orbit satellite observations at 300-500 nm was investigated, utilizing polar-orbit satellite data of the MODerate resolution Imaging Spectroradiometer (MODIS) and Ozone Mapping Instrument (OMI), and the radiative transfer model (RTM) experiment. The variables in this study can be cloud, Rayleigh-scattering, aerosol, ozone and surface type. The cloud detection in high-resolution MODIS pixels ($1km{\times}1km$) was compared with that in GEMS-scale pixels ($8km{\times}7km$). The GEMS detection was consistent (~79%) with the MODIS result. However, the detection probability in partially-cloudy (${\leq}40%$) GEMS pixels decreased due to other effects (i.e., aerosol and surface type). The Rayleigh-scattering effect in RGB images was noticeable over ocean, based on the RTM calculation. The reflectance at top of atmosphere ($R_{toa}$) increased with aerosol amounts in case of $R_{sfc}$<0.2, but decreased in $R_{sfc}{\geq}0.2$. The $R_{sfc}$ errors due to the aerosol increased with wavelength in the UV, but were constant or slightly decreased in the visible. The ozone absorption was most sensitive at 328 nm in the UV region (328-354 nm). The $R_{sfc}$ error was +0.1 because of negative total ozone anomaly (-100 DU) under the condition of $R_{sfc}=0.15$. This study can be useful to estimate $R_{sfc}$ uncertainties in the GEMS retrieval.

Macrobenthic Faunal Assemblages on the Soft-Bottoms around Dokdo in the East Sea, Korea (한국 동해 독도 주변 천해 및 사면해역의 대형저서동물군집)

  • Choi, Jin-Woo;Hyun, Sang-Min;Kim, Dong-Sung;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.429-442
    • /
    • 2002
  • The faunal assembalges of macrobenthos and their habitat conditions on the soft-bottoms around Dokdo(Dok Island) was investigated using a box corer and a van Veen grab in Sept. 1999 and May 2000. The sediments in the slope sites were composed of sand particles and those in Ullneung Basin were mud. The sediments in the shelf sites were in the range of fine to medium sand. The organic content of the slope sediments was in the range of 1 to 2%. The macrobenthos occurred at the slope sites represented by 15faunal groups belonging to 8 phyla, and the major faunal group was polychaetous annelids. They comprised ca. 80.6% in slope sites, and 84.8% in shelf sites. Dominant species in the slope were Exogone verugera(40.9%), Cossura longocirrata (8.4%), Tharyx sp. (6.6%), Scalibregma inflatum (4.9%), Aedicira sp. (4.7%), Aricidea ramosa (3.8%), and Sigambra tentaculata (3.7%). Dominant species in the shelf were Chone sp. (49.3%), Tharyx sp. (18.4%), Ophelina acuminata (6.7%), Chaetozone setosa (3.8%), Glycera sp. (2.6%), and Aedicira sp. (2.4%). The mean densities of macrobenthos in the slope and shelf area were $2,028\;ind./m^2$ and $456\;ind./m^2$, respectively. The trophic composition of benthic polychaete worms in the slope area was different from that in shallow shelf area: surface deposit feeding worms were most abundant in slope area whereas filter feeding worms in shelf area. According to the cluster analysis and MDS plots, the spatial distribution of macrobenthos in Dokdo slope region was related with the sediment properties such as particle size and organic content. In the case of vertical distribution of macrobenthos in slope sites, most faunas concentrated in the upper sediment layer within 2cm depth.

Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea (시화호 코어 퇴적물 내 미량금속 분포 특성 및 오염 평가)

  • Ra, Kongtae;Kim, Eun-Soo;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.69-83
    • /
    • 2013
  • Metal concentrations in creek water, sewer outlets and core sediments were analyzed to identify the potential origin of metal pollution and to evaluate the extent of metal pollution and potential toxicity of Lake Shihwa. Mean concentrations for dissolved metals in creek water and sewer outlets were 1.6~136 times higher than those in the surface seawater of Lake Shihwa. Metal concentrations in creek water from an industrial region were also higher than those from municipal and agricultural regions, indicating that the potential source of metal pollution in the study area might be mainly due to industrial activities. The vertical profiles of metals in core sediments showed an increasing trend toward the upper sediments. Extremely higher concentrations of metals were observed in the vicinity of Banweol industrial complex. The results of a geo-accumulation index indicated that Cu, Zn and Cd were highly polluted. By comparing the sediment quality guidelines such as TEL and PEL, six metals such as Cr, Ni, Cu, Zn, Cd and Pb levels in core sediments nearby industrial complex exceeded the PEL value. Mean PEL quotient (mPELQ) was used to integrate the estimate of potential toxicity for measured metals in the present study. Mean PELQs in core sediments from Lake Shihwa ranged from 0.2~2.3, indicating that benthic organisms nearby the industrial complex may have been adversely affected.

Determination of dynamic threshold for sea-ice detection through relationship between 11 µm brightness temperature and 11-12 µm brightness temperature difference (11 µm 휘도온도와 11-12 µm 휘도온도차의 상관성 분석을 활용한 해빙탐지 동적임계치 결정)

  • Jin, Donghyun;Lee, Kyeong-Sang;Choi, Sungwon;Seo, Minji;Lee, Darae;Kwon, Chaeyoung;Kim, Honghee;Lee, Eunkyung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.243-248
    • /
    • 2017
  • Sea ice which is an important component of the global climate system is being actively detected by satellite because it have been distributed to polar and high-latitude region. and the sea ice detection method using satellite uses reflectance and temperature data. the sea ice detection method of Moderate-Resolution Imaging Spectroradiometer (MODIS), which is a technique utilizing Ice Surface Temperature (IST) have been utilized by many studies. In this study, we propose a simple and effective method of sea ice detection using the dynamic threshold technique with no IST calculation process. In order to specify the dynamic threshold, pixels with freezing point of MODIS IST of 273.0 K or less were extracted. For the extracted pixels, we analyzed the relationship between MODIS IST, MODIS $11{\mu}m$ channel brightness temperature($T_{11{\mu}m}$) and Brightness Temperature Difference ($BTD:T_{11{\mu}m}-T_{12{\mu}m}$). As a result of the analysis, the relationship between the three values showed a linear characteristic and the threshold value was designated by using this. In the case ofsea ice detection, if $T_{11{\mu}m}$ is below the specified threshold value, it is detected as sea ice on clear sky. And in order to estimate the performance of the proposed sea ice detection method, the accuracy was analyzed using MODIS Sea ice extent and then validation accuracy was higher than 99% in Producer Accuracy (PA).

The Summer Distribution of Picophytoplankton in the Western Pacific (하계 서태평양의 초미소 식물플랑크톤 분포 특성 연구)

  • Noh Jae-Hoon;Yoo Sin-Jae;Kang Sung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.67-80
    • /
    • 2006
  • The effect of environmental forcing on picophytoplankton distribution pattern was investigated in the tropical and subtropical western Pacific (TSWP) and the East Sea in September, 2002, and the continental shelf of the East China Sea (C-ECS) in August, 2003. The abundance of picophytoplankton populations, Synechococcus, Prochlorococcus and picoeukaryotes were determined by flow cytometry analyses. Picophytoplankton vertical profiles and integrated abundance $(0\sim100\;m)$ were compared with these three physiochemically different regions. Variation patterns of integrated cell abundance of Synechococcus and Prochlorococcus in these three regions showed contrasting results. Synechococcus showed average abundance of $84.5X10^{10}\;cells\;m^{-2}$, in the TSWP, $305.6X10^{10}\;cells\;m^{-2}$ in the C-ECS, and $125.4X10^{10}\;cells\; m^{-2}$ in the East Sea where increasing cell concentrations were observed in the region with abundant nutrient. On the other hand, Prochlorococcus showed average abundance of $504.5X10^{10}\;cells\;m^{-2}$ in the TSWP, $33.2x10^{10}\;cells\;m^{-2}$ in the C-ECS, and $130.2X10^{10}\;cells\;m^{-2}$ in the East Sea exhibiting a distinctive pattern of increasing cell abundance in oligotrophic warm water. Although picoeukaryotes showed a similar pattern to Synechococcus, the abundance was 1/10 of Synechococcus. Synechococcus and picoeukaryotes showed ubiquitous distribution whereas Prochlorococcus generally did not appear in the C-ECS and the East Sea with low salinity environment. The average depth profiles for Synechococcus and Prochlorococcus displayed uniform abundance in the surface mixed layer with a rapid decrease below the surface mixed layer. for Prochlorococcus, a similar rapid decreasing trend was not observed below the surface mixed layer of the TSWP, but Prochlorococcus continued to show high cell abundance even down to 100 m depth. Picoeukaryotes showed uniform abundance along $0\sim100\;m$ depth in the C-ECS, and abundance maximum layer appeared in the East Sea at $20\sim30\;m$ depth.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea II. Distribution of Particulate Organic Carbon and Nitrogen in Winter, 1995 (동해 극전선의 영양염류 순환과정 II. 1995년 동계 입자태 유기탄소 및 유기질소의 분포)

  • YANG Han-Soeb;MOON Chang-Ho;OH Seok-Jin;LEE Haeng-Pil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.442-450
    • /
    • 1997
  • The chemical properties of water masses were investigated at 33 stations of the southeastern last Sea in February, 1995 on board R/V Tam-Yang. The water masses were not clearly distinguished due to the vortical mixing in winter. However, on the basis of the T-S and $T-O_2$ diagrams, water masses in the study area were divided into five groups (Type I, Type II, Type III, Type IV, Type V). (1) $>9.0^{\circ}C,\;>34.35\;psu,\;5.08\~5.60m\ell/\ell$ at Type I, (2) $6.0\~9.0^{\circ}C,\;34.15\~34.35\;psu,\;5.60\~5.90\;m\ell/\ell$ at Type II, (3) $4.0\~6.0^{\circ}C,\;34.00\~34.15\;psu,\;>5.90m\ell/\ell$ at Type III, (4) $1.5\~4.0^{\circ}C,\;34.00\~34.05\;psu,\;5.40\~5.90\;m\ell/\ell$ at Type IV, (5) $<1.5^{\circ}C,\;34.05\~34.07\;psu,\;4.80\~5.40\;m\ell/\ell$ at Type V. In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly with depth. The highest concentrations occurred in Type IV, while the concentrations in Type I were the lowest. The N/P ratios were less than Redfield ratio, indicating that nitrogenous nutrients were the limiting factor tor phytoplankton growth. The concentrations of POC and PON were in the range of $0.49\~20.03\;{\mu}g-at/\ell\;and\;0.09\~5.34\;{\mu}g-at/\ell$, respectively. The relatively high concentration occured in the surface layer of inner shore, showing that the concentration at each water mass followed the order Type I > Type II > Type III > Type IV > Type V, respectively. The C:N ratio in particulate organic matter was lower than the values reported in other region due to relatively high concentrations of PON in the study area. Relatively high ratios of POC to chlorophyll $\alpha$ during the study periods indicate that non-living detritus comparised most of the POC in the study area.

  • PDF

Overview and Prospective of Satellite Chlorophyll-a Concentration Retrieval Algorithms Suitable for Coastal Turbid Sea Waters (연안 혼탁 해수에 적합한 위성 클로로필-a 농도 산출 알고리즘 개관과 전망)

  • Park, Ji-Eun;Park, Kyung-Ae;Lee, Ji-Hyun
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.247-263
    • /
    • 2021
  • Climate change has been accelerating in coastal waters recently; therefore, the importance of coastal environmental monitoring is also increasing. Chlorophyll-a concentration, an important marine variable, in the surface layer of the global ocean has been retrieved for decades through various ocean color satellites and utilized in various research fields. However, the commonly used chlorophyll-a concentration algorithm is only suitable for application in clear water and cannot be applied to turbid waters because significant errors are caused by differences in their distinct components and optical properties. In addition, designing a standard algorithm for coastal waters is difficult because of differences in various optical characteristics depending on the coastal area. To overcome this problem, various algorithms have been developed and used considering the components and the variations in the optical properties of coastal waters with high turbidity. Chlorophyll-a concentration retrieval algorithms can be categorized into empirical algorithms, semi-analytic algorithms, and machine learning algorithms. These algorithms mainly use the blue-green band ratio based on the reflective spectrum of sea water as the basic form. In constrast, algorithms developed for turbid water utilizes the green-red band ratio, the red-near-infrared band ratio, and the inherent optical properties to compensate for the effect of dissolved organisms and suspended sediments in coastal area. Reliable retrieval of satellite chlorophyll-a concentration from turbid waters is essential for monitoring the coastal environment and understanding changes in the marine ecosystem. Therefore, this study summarizes the pre-existing algorithms that have been utilized for monitoring turbid Case 2 water and presents the problems associated with the mornitoring and study of seas around the Korean Peninsula. We also summarize the prospective for future ocean color satellites, which can yield more accurate and diverse results regarding the ecological environment with the development of multi-spectral and hyperspectral sensors.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.