• Title/Summary/Keyword: Pointing system

Search Result 231, Processing Time 0.026 seconds

Enhancement of Geo-pointing Performance for Electro-Optical Systems by Compensating Transmission Time Delay of Navigation Data (항법정보 전송지연 보상을 통한 전자광학장비 좌표지향성능 향상)

  • Kim, Sung-Su;Moon, Seong-Man;Kwon, Kang-Hun;Yun, Chang-Ryul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2013
  • Geo-pointing is a function that maintains LOS(Line of Sight) to a stationary ground target by controlling azimuth and elevation angles of a EOS(Electro-Optical System) which are calculated from aircraft navigation data and target coordinates. In design and implementation of the geo-pointing, a transmission time delay between GPS/INS and EOS is a major degradation factor of the geo-pointing performance when the aircraft is rapidly maneuvered especially. In this paper, a kalman filter is designed to compensate the transmission time delay of aircraft navigation data. Simulation and test results show that the geo-pointing performance is enhanced by the proposed compensation technique.

Gyrocompass Correction and Pointing Accuracy Improvement of the Ship-Borne Mobile Down Range Antenna for Launcher Telemetry (우주발사체 텔레메트리용 해상 이동형 다운레인지 안테나의 자이로컴퍼스 보정과 포인팅 정확도 향상)

  • Lee, Sun-Ik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.532-541
    • /
    • 2014
  • The ship-borne mobile down range telemetry antenna system having 4.6 m reflector antenna and 3-axis mounting structure at S-band requires the precise pointing accuracy at sea for the launch mission. Using the LEO satellites tracking, a method to determine and verify the antenna pointing and tracking performance, and to find the pointing bias which dominantly contributes to the pointing inaccuracy, is presented. Based upon the tests conducted on the Jeju sea and Pacific sea, the pointing bias is determined and its origin is also identified as the drift of the heading angle of the gyrocompass. The applied systematic correction taking into account the pointing bias, and the achieved improvement of the pointing accuracy are shown. Thanks to the correction, it is presented that this antenna tracked the launcher(KSLV-I) stably within the required pointing accuracy in the following KSLV-I third launch.

Fuzzy Screen Detector for a Vision Based Pointing Device (비젼 기반의 포인팅 기기를 위한 퍼지 스크린 검출기)

  • Kho, Jae-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.297-302
    • /
    • 2009
  • In this paper, we propose advanced screen detector as a tool for selecting the object for tracking and estimating its distance from a screen using fuzzy logic in vision based pointing device. Our system classifies the line component of the input image into horizontal and vertical lines and applies the fuzzy rule to obtain the best line pair which constitute peripheral framework of the screen. The proposed system improves the detection ratio for detecting the screen in relative to the detector used in the previous works for hand-held type vision based pointing device. Also it allows to detect the screen even though a small part of it may be hidden behind other object.

3D Object Location Identification Using Finger Pointing and a Robot System for Tracking an Identified Object (손가락 Pointing에 의한 물체의 3차원 위치정보 인식 및 인식된 물체 추적 로봇 시스템)

  • Gwak, Dong-Gi;Hwang, Soon-Chul;Ok, Seo-Won;Yim, Jung-Sae;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.703-709
    • /
    • 2015
  • In this work, a robot aimed at grapping and delivering an object by using a simple finger-pointing command from a hand- or arm-handicapped person is introduced. In this robot system, a Leap Motion sensor is utilized to obtain the finger-motion data of the user. In addition, a Kinect sensor is also used to measure the 3D (Three Dimensional)-position information of the desired object. Once the object is pointed at through the finger pointing of the handicapped user, the exact 3D information of the object is determined using an image processing technique and a coordinate transformation between the Leap Motion and Kinect sensors. It was found that the information obtained is transmitted to the robot controller, and that the robot eventually grabs the target and delivers it to the handicapped person successfully.

Coordinated Simultaneous Attitude Pointing for Multiple Satellites Under Formation Flying

  • Choi, Yoon-Hyuk;Lee, Henzeh;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.129-139
    • /
    • 2007
  • In this paper, attitude control laws for simultaneous pointing of multiple spacecrafts are considered under a formation flying scenario. The basic approach lies in adaptive feedback gains using relative attitude information or maneuver time approximation for coordinated attitude control. Each control law is targeted to balancing mean motion or to correcting system response to the slowest satellite. The control gain adaptation is constructed by two approaches. The first one is using variable damping gain to manipulate speed of a fast system response, and the second one uses alternate natural frequency of the system under control. The validity and stability of the proposed approaches are examined analytically and tested through numerical simulations.

Real-time Implementation and Application of Pointing Region Estimation System using 3D Geometric Information in Real World (실세계 3차원 기하학 정보를 이용한 실시간 지시영역 추정 시스템의 구현 및 응용)

  • Han, Yun-Sang;Seo, Yung-Ho;Doo, Kyoung-Soo;Kim, Jin-Tae;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper we propose a real-time method to estimate a pointing region from two camera images. In general, a pointing target exists in the face direction when a human points to something. Therefore, we regard the direction of pointing as the straight line that connects the face position with the fingertip position. First, the method extracts two points in the face and the fingertips region by using detecting the skin color of human being. And we used the 3D geometric information to obtain a pointing detection and its region. In order to evaluate the performance, we have build up an ICIGS(Interactive Cinema Information Guiding System) with two camera and a beam project.

Pointing Accuracy Analysis of Space Object Laser Tracking System at Geochang Observatory (거창 우주물체 레이저 추적 시스템의 추적마운트 지향 정밀도 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Park, Jong-Uk;Choi, Man-Soo;Yu, Sung-Yeol;Park, Eun-Seo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.953-960
    • /
    • 2021
  • Korea Astronomy and Space Science Institute has been verifying the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for not only scientific research but also national space missions. The system employs an optical telescope consisting of a 100 cm primary mirror and an altazimuth mount for fast and precise tracking. The precise pointing and tracking capability in a tracking mount is considered as one of important performance metrics in the fields of automatic tracking and precise application research. So it is required to analyze a mount model for investigating pointing error factors and compensating pointing error. In this study, we investigated various factors causing static pointing errors of tracking mount and analyzed the pointing accuracy of the tracking mount at Geochang observatory by estimating mount parameters based on the least square method.

Performance estimation model of the three-dimensional pointing tasks in virtual environment systems (가상환경에서의 3차원 포인팅작업 성능평가 모형)

  • 박재희;박경수
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.253-258
    • /
    • 1996
  • Virtual reality environment system is expected to be used as a new user interface tool oweing to its high immersiveness and high interactivity. To use VR interface effectively, we should identify the characteristics of the three-dimensional control tasks as if we did in two-dimensional graphic user interface environments. As a first step, we validated Fitts'law for the three-dimensional pointing tasks with the two input devices, Spaceball and Spacemouse. Different from the two-dimensional control tasks, VR pointing tasks needed inclusion of a new variable, size of the moving object, to Fitts'law. The modified

  • PDF

Performance Improvement of the Tank Gun-Pointing System Stabilized Drive (전차포 표적지향 시스템의 안정화ㆍ구동성능 향상연구)

  • 이대옥;김학성;안태영
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.65-81
    • /
    • 1998
  • Objective technology development has been carried out aiming performance improvement of the stabilized gun-pointing system for Type-4 tank. The full nonlinear simulation programs with gun bending modes and nonlinearities were developed to estimate, analyze and design the driving and stabilization system, and validated through the comparisons between simulations and test results of the existing Type-1 tank. The prototype is designed, fabricated, tested and evaluated on the test range as well as in the laboratory and followed by development and operational tests. The performance test results on stationary and on-the-move conditions are turned out to be superior to those of the advanced tanks developed in foreign countries.

  • PDF

Compensation of Geo-Pointing Error due to Information Transport Delay for Electro-Optical Tracking System (전자광학 추적장비의 정보 전송지연에 따른 좌표지향 오차보상)

  • Yim, Jong-Bin;Moon, Seong-Man;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.1-7
    • /
    • 2011
  • EOTS(Electro-Optical Tracking System) provides stabilized images while tracking a moving target. The key of geo-pointing is the function that fixes EOTS's sight to a specific position(geo-point) throughout aircraft maneuvers. In this paper, a major error source for the geo-pointing is identified as the transport delay of navigation information, and an augmented Kalman filter is designed to estimate the present attitude of aircraft using delayed navigation information. Simulation results including the presented scheme shows that the error due to the information transport delay reduces under half.