• Title/Summary/Keyword: Pointing Device

Search Result 72, Processing Time 0.024 seconds

Design of a Background Image Based Multi-Degree-of-Freedom Pointing Device (배경영상 기반 다자유도 포인팅 디바이스의 설계)

  • Jang, Suk-Yoon;Kho, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.133-141
    • /
    • 2008
  • As interactive multimedia have come into wide use, user interfaces such as remote controllers or classical computer mice have several limitations that cause inconvenience. We propose a vision-based pointing device to resolve this problem. We analyzed the moving image from the camera which is embedded in the pointing device and estimate the movement of the device. The pose of the cursor can be determined from this result. To process in the real time, we used the low resolution of $288{\times}208$ pixel camera and comer points of the screen were tracked using local optical flow method. The distance from screen and device was calculated from the size of screen in the image. The proposed device has simple configurations, low cost, easy use, and intuitive handhold operation like traditional mice. Moreover it shows reliable performance even in the dark condition.

Active Control of On-board Jitter Isolation for Spacecraft (인공위성의 내부 진동 분리를 위한 능동 제어 연구)

  • Oh, Se-Boung;Bang, Hyo-Choong;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.80-87
    • /
    • 2004
  • Active control of on-orbit spacecraft jitter is a significant problem for future spacecraft mission requiring stringent pointing performance. Jitter is major disturbance source degrading payload pointing performance. Both passive and active jitter isolation techniques have been studied during the last decade. We present active jitter isolation for a model device in this work. The device provides active control capability by 3 degree-of-freedom control of payload in feedback control strategy. Mathematical modeling of the device is pursued which is naturally used for a baseline controller design. Simulation results are used to validate the designed control law.

Device for Catheter Placement of External Ventricular Drain

  • Ann, Jae-Min;Bae, Hack-Gun;Oh, Jae-Sang;Yoon, Seok-Mann
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.322-324
    • /
    • 2016
  • To introduce a new device for catheter placement of an external ventricular drain (EVD) of cerebrospinal fluid (CSF). This device was composed of three portions, T-shaped main body, rectangular pillar having a central hole to insert a catheter and an arm pointing the tragus. The main body has a role to direct a ventricular catheter toward the right or left inner canthus and has a shallow longitudinal opening to connect the rectangular pillar. The arm pointing the tragus is controlled by back and forth movement and turn of the pillar attached to the main body. Between April 2012 and December 2014, 57 emergency EVDs were performed in 52 patients using this device in the operating room. Catheter tip located in the frontal horn in 52 (91.2%), 3rd ventricle in 2 (3.5%) and in the wall of the frontal horn of the lateral ventricle in 3 EVDs (5.2%). Small hemorrhage along to catheter tract occurred in 1 EVD. CSF was well drained through the all EVD catheters. The accuracy of the catheter position and direction using this device were 91% and 100%, respectively. This device for EVD guides to provide an accurate position of catheter tip safely and easily.

Design and Evaluation of a Hand-held Device for Recognizing Mid-air Hand Gestures (공중 손동작 인식을 위한 핸드 헬드형 기기의 설계 및 평가)

  • Seo, Kyeongeun;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • We propose AirPincher, a handheld pointing device for recognizing delicate mid-air hand gestures to control a remote display. AirPincher is designed to overcome disadvantages of the two kinds of existing hand gesture-aware techniques such as glove-based and vision-based. The glove-based techniques cause cumbersomeness of wearing gloves every time and the vision-based techniques incur performance dependence on distance between a user and a remote display. AirPincher allows a user to hold the device in one hand and to generate several delicate finger gestures. The gestures are captured by several sensors proximately embedded into AirPincher. These features help AirPincher avoid the aforementioned disadvantages of the existing techniques. We experimentally find an efficient size of the virtual input space and evaluate two types of pointing interfaces with AirPincher for a remote display. Our experiments suggest appropriate configurations to use the proposed device.

Human performance evaluation of the three-dimensional input devices in virtual environment system (가상현실 시스템에서의 3차원 입력장치의 인간성능 평가)

  • Park, Jae-Hui;Park, Gyeong-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.49-61
    • /
    • 2000
  • An experiment was designed to evaluate Fitts' law for the three-dimensional virtual pointing task and to compare the three input devices; Spaceball, Spacemouse, and 3D-Mouse. The result showed that Fitts law fitted poorly for the three-dimensional pointing tasks with relatively low coefficients of determinant. Three reasons, high degree-of-freedom, dynamic egocentric viewpoint change, and clutching problem were discussed to explain the poor fitness of Fitts' law. In terms of device comparison, the 3D-Mouse was superior to the other input devices. Also, the stereoscopic display significantly increased the performance. The results of this study can be used for the design of virtual control tasks and the selection of suitable input devices.

  • PDF

Modeling of Fitts' Movement Time Including Effect of Control-Display Gain (C-D gain의 변화를 고려한 Fitts 이동시간 추정 모델에 관한 연구)

  • Park, Kyung-soo;Koh, Bong-kee;Kim, Un-hoi
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.39-49
    • /
    • 2000
  • During human-computer interaction(HCI), people typically send inputs to computers through electromechanical pointing devices. Many applied studies have therefore evaluated cursor-positioning movements made with various pointing devices. Though there were so many studies about performance of various pointing devices, it was nearly impossible to compare device performance each other until the Fitts' law was applied. It does appear that Fitts' law may predict performance reasonably well for the one C-D gain level. But in varying C-D gain levels, Fitts' law could not predict movement time. This study investigated the effects of C-D gain in mouse movement time and suggested a revised Fitts' model including C-D gain as an independent variable. The revised Fitts' model may use to measure the performance of various devices in varying C-D gain levels.

  • PDF

Implement of Hand Gesture Interface using Ratio and Size Variation of Gesture Clipping Region (제스쳐 클리핑 영역 비율과 크기 변화를 이용한 손-동작 인터페이스 구현)

  • Choi, Chang-Yur;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • A vision based hand-gesture interface method for substituting a pointing device is proposed in this paper, which is used the ratio and size variation of Gesture Region. Proposed method uses the skin hue&saturation of the hand region from the HSI color model to extract the hand region effectively. This method can remove the non-hand region, and reduces the noise effect by the light source. Also, as the computation quantity is reduced by detecting not the static hand-shape recognition, but the ratio and size variation of hand-moving from the clipped hand region in real time, more response speed is guaranteed. In order to evaluate the performance of the our proposed method, after applying to the computerized self visual acuity testing system as a pointing device. As a result, the proposed method showed the average 86% gesture recognition ratio and 87% coordinate moving recognition ratio.

Remote Control Apparatus and Display Remote Control System Comprising the Same (원격 제어 장치 및 이를 포함하는 디스플레이 원격 제어 시스템)

  • Yoon, Yeo-Jun;Park, Dea-Woo
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.165-174
    • /
    • 2006
  • This paper is a matter of remote control apparatus and display remote control system comprising the same. The remote controller is a wireless remote pointing device that is included a function of mouse and a function of remote controller for VOD etc. It is assembled a sending signal part to communicate with display device, a image sensor part to capture a seen of front view and a main body. Also, it includes a control part that analyzes the captured image, calculates a relative moving factor that main body is moved by user, and then controls the mouse cursor on the display device. The remote control apparatus is able to capture a seen of front view, to analyze the captured image, and to move a mouse cursor point on the display device as much as it calculated relative moving factor. Therefor it brings down the cost of production by a product design that is increased user satisfaction. And it, using the patent and the new product design, will make an epoch in development of the remote control system for Ubiquitous broadcasting industry.

  • PDF

Remote Control Apparatus and Display Remote Control System Comprising the Same (원격 제어 장치 및 이를 포함하는 디스플레이 원격 제어 시스템)

  • Yoon, Yeo-Jun;Park, Dea-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.161-170
    • /
    • 2007
  • This paper is a matter of remote control apparatus and display remote control system comprising the same. The remote controller is a wireless remote pointing device that is included a function of mouse and a function of remote controller for VOD etc. It is assembled a sending signal part to communicate with display device, a image sensor part to capture a scene of front view and a main body. Also, it includes a control part that analyzes the captured image, calculates a relative moving factor that main body is moved by user, and then controls the mouse cursor on the display device. The remote control apparatus is able to capture a seen of front view, to analyze the captured image, and to move a mouse cursor point on the display device as much as it calculated relative moving factor. Therefor it brings don the cost of production by a product desist that is increased user satisfaction. And it, using the patent and the new product desist, will make an epoch in development of the remote control system for Ubiquitous broadcasting industry.

  • PDF

Comparison of Vertical and Horizontal Eye Movement Times in the Selection of Visual Targets by an Eye Input Device

  • Hong, Seung Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • Objective: The aim of this study is to investigate how well eye movement times in visual target selection tasks by an eye input device follows the typical Fitts' Law and to compare vertical and horizontal eye movement times. Background: Typically manual pointing provides excellent fit to the Fitts' Law model. However, when an eye input device is used for the visual target selection tasks, there were some debates on whether the eye movement times in can be described by the Fitts' Law. More empirical studies should be added to resolve these debates. This study is an empirical study for resolving this debate. On the other hand, many researchers reported the direction of movement in typical manual pointing has some effects on the movement times. The other question in this study is whether the direction of eye movement also affects the eye movement times. Method: A cursor movement times in visual target selection tasks by both input devices were collected. The layout of visual targets was set up by two types. Cursor starting position for vertical movement times were in the top of the monitor and visual targets were located in the bottom, while cursor starting positions for horizontal movement times were in the right of the monitor and visual targets were located in the left. Results: Although eye movement time was described by the Fitts' Law, the error rate was high and correlation was relatively low ($R^2=0.80$ for horizontal movements and $R^2=0.66$ for vertical movements), compared to those of manual movement. According to the movement direction, manual movement times were not significantly different, but eye movement times were significantly different. Conclusion: Eye movement times in the selection of visual targets by an eye-gaze input device could be described and predicted by the Fitts' Law. Eye movement times were significantly different according to the direction of eye movement. Application: The results of this study might help to understand eye movement times in visual target selection tasks by the eye input devices.