• Title/Summary/Keyword: Point-resolved spectroscopy (PRESS)

Search Result 13, Processing Time 0.015 seconds

Comparison of Proton T1 and T2 Relaxation Times of Cerebral Metabolites between 1.5T and 3.0T MRI using a Phantom (모형을 이용한 1.5T와 3.0T 자기공명에서의 뇌 대사물질들의 수소 T1과 T2 이완시간의 비교)

  • Kim, Ji-Hoon;Chang, Kee-Hyun;Song, In-Chan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • Purpose : To present the T1 and T2 relaxation times of the major cerebral metabolites at 1.5T and 3.0T and compare those between 1.5T and 3.0T. Materials and Methods : Using the phantom containing N-acetyl aspartate (NAA), Choline (Cho), and Creatine (Cr) at both 1.5T and 3.0T MRI, the T1 relaxation times were calculated from the spectral data obtained with 5000 ms repetition time (TR), 20 ms echo time (TE), and 11 different mixing time (TM)s using STEAM (STimulated Echo-Acquisition Mode) method. The T2 relaxation times were obtained from the spectral data obtained with 3000 ms TR and 5 different TEs using PRESS (Point-RESolved Spectroscopy) method. The T1 and T2 relaxation times obtained at 1.5T were compared with those of 3.0T. Results : The T1 relaxation times of NAA were $2293\;{\pm}\;48\;ms$ at 1.5T and $2559\;{\pm}\;124\;ms$ at 3.0T (11.6% increase at 3.0T). The T1 relaxation times of Cho were $2540\;{\pm}\;57\;ms$ at 1.5T and $2644\;{\pm}\;76\;ms$ at 3.0T (4.1% increase at 3.0T). The T1 relaxation times of Cr were $2543\;{\pm}\;75\;ms$ at 1.5T and $2665\;{\pm}\;94\;ms$ at 3.0T (4.8% increase). The T2 relaxation times of NAA were $526\;{\pm}\;81\;ms$ at 1.5T and $468\;{\pm}\;74\;ms$ at 3.0T (11.0% decrease at 3.0T). The T2 relaxation times of Cho were $220\;{\pm}\;44ms$ at 1.5T and $182\;{\pm}\;35\;ms$ at 3.0T (17.3% decrease at 3.0T). The T2 relaxation times of Cr were $289\;{\pm}\;47\;ms$ at 1.5T and $275\;{\pm}\;57\;ms$ at 3.0T (4.8% decrease at 3.0T). Conclusion : The T1 relaxation times of the major cerebral metabolites (NAA, Cr, Cho), which were measured at the phantom, were 4.1%-11.6% longer at 3.0T than at 1.5T. The T2 relaxation times of them were 4.8%-17.3% shorter at 3.0T than at 1.5T. To optimize MR spectroscopy at 3.0T, TR should be lengthened and TE should be shortened.

  • PDF

MR Spectoscopic Patterns Early and Late Cerebral Ischemic Infarct: Correlation with Clinical Findings (초기 및 지연기 허혈성 뇌경색의 양자 자기공명분광양상 : 임상소견과의 비교)

  • 이종석;장기현;송인찬;고영환;강동화;한문희;노재규
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.146-153
    • /
    • 1999
  • Purpose : To evaluate the proton MR spectroscopy (MRS) findings of early and late ischemic infarcts and to compare these MRS findings with clinical symptoms. Materials and Methods : We obtained MRs spectra of 28 consecutive patients with early ischemic infarct (15 me, 13 women) between 2-10 (mean 6.2) days after stroke onset. Follow-up MRS was carried out between 20-32 (mean 25) days in 12 patients. The MRs spectra were acquired at 1.5T MR unit using single voxel technique with PRESS sequence, TR of 2000ms, TE of 288 (144)ms, and voxel size of 2cm x 2cm x 2cm in the three areas; an infarct lesion, the brain parenchyma adjacent to the lesion, and contralateral normal brain parenchyma. The NAA/creatine, choline/creatine, and lactate/creatine ratios were calculated in each spectrum. The spectra of MRS were compared with clinical symptoms. Results : In early infarct, decreased NAA/creatine ratio (n=22) and increased lactate/creatine ratio (n=25) were found in the infarct lesion. Choline/creastine ratio was within normal range (n=25). On follow-up MRS in late stage, NAA/creatine ratio in the infarct lesion decreased further (n=5), did not change (n=6), or increased (n=1). Lactate/creatine ratio became less elevated (n=10), or did not changed (n=2). Choline/creatine ratio had a trend for increase. The decreased NAA/creatine and increased lactate/creatine ratios were correlated well with the severity of symptoms, respectively. Conclusion : Decreased NAA/creatine and increased lactate/creatine ratios were common MRS findings characteristic in early ischemic infarct and correlated well with clinical severity. On follow-up MRS in late stage, NAA/creatine ratio decreased further or did not change, and lactate/creatine ratio became less elevated.

  • PDF

Assessment of the Hydration Effect on In Vitro Human Skin by $^1H$ MRS at 14.1T System (고자장 14.1 T MRI/MRS 시스템에서 양성자 자기공명분광법을 이용한 생체 외 인체피부 보습효과에 대한 연구)

  • Choi Chi-Bong;Hong Sung-Tak;Woo Dong-Chul;Yoon Seong-Ik;Yoon Moon-Hyun;Cho Ji-Hyun;Lee Chul-Hyun;Cheong Chae-Joon;Park Sang-Yong;Oh Chil-Hwan;Choe Bo-Young
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Purpose: We Investigated to achieve high resolution magnetic resonance (MR) Imaging and spectra of human skin in vitro with using a 14.1 T MRI/MRS system, and to evaluate the hydration effect of a moisturizer by measuring the skin's water concentration. Materials and Methods: We used the Brukrer 14.1 T MRI/MRS system with a vertical standard bore that was equipped with a DMX spectrometer gradient system (200 G/cm at a maximum 40 A), RF resonators (2, 5 and 10 mm) and Para Vision software. Spin echo and fast spin echo pulse sequences were employed for obtaining the high resolution MR images. The 3D-localized point resolved spectroscopy (PRESS) method was used to acquire the MR spectra. Results: The high resolution MR images and spectra of human skin in vitro were successfully obtained on a 14.IT system. The water concentration of human skin after applying a moisturizer was higher than that before applying a moisturizer. Conclusions: The present study demonstrated that the high-resolution MR images and spectra of human skin from a high field MRS instrument could be applicable to evaluating the hydration state of the stratum corneum.

  • PDF