• Title/Summary/Keyword: Point-based Design

Search Result 2,739, Processing Time 0.03 seconds

Performance Analysis of a Reheat-cycle Gas Turbine for Combined Cycle Power Plants Using a Simulation Software for Chemical Process Plants (화학공정 플랜트 해석용 소프트웨어를 이용한 복합화력 발전용 재열 사이클 가스터빈의 성능특성에 관한 연구)

  • Park Min-Ki;Ro Sung-Tack;Sohn Jeong-Lak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.472-479
    • /
    • 2006
  • Recently, various methods have been developed to improve the performance of gas turbines for combined cycle power plants. This paper especially focused on the gas turbine with a reheat process. The purpose of this study is to analyze performance characteristics of a reheat-cycle gas turbine on both a design point and off-design operations. Results of the parametric study of this model show how operating and design parameters influence on the performance of the gas turbine. Moreover, possibilities for the analysis of off-design performance based on a self-generated compressor performance characteristic map are presented.

Segmentation of Measured Point Data for Reverse Engineering (역공학을 위한 측정점의 영역화)

  • 양민양;이응기
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • In reverse engineering, when a shape containing multi-patched surfaces is digitized, the boundaries of these surfaces should be detected. The objective of this paper is to introduce a computationally efficient segmentation technique for extracting edges, ad partitioning the 3D measuring point data based on the location of the boundaries. The procedure begins with the identification of the edge points. An automatic edge-based approach is developed on the basis of local geometry. A parametric quadric surface approximation method is used to estimate the local surface curvature properties. the least-square approximation scheme minimizes the sum of the squares of the actual euclidean distance between the neighborhood data points and the parametric quadric surface. The surface curvatures and the principal directions are computed from the locally approximated surfaces. Edge points are identified as the curvature extremes, and zero-crossing, which are found from the estimated surface curvatures. After edge points are identified, edge-neighborhood chain-coding algorithm is used for forming boundary curves. The original point set is then broke down into subsets, which meet along the boundaries, by scan line algorithm. All point data are applied to each boundary loops to partition the points to different regions. Experimental results are presented to verify the developed method.

  • PDF

A Study on the Optimal Frame Design of Armscye Circumference (겨드랑둘레선의 최적 프레임 생성에 관한 연구)

  • Park, Sun-Mi;Choi, Kueng-Mi;Nam, Yun-Ja;Ryu, Young-Sil;Jun, Jung-Ill
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.788-798
    • /
    • 2009
  • This study aims to develop a highly reproducible, optimal frame design algorithm using variations in the curvature of armscye circumference, which will provide the basics for remodeling the 3D human body shape with the concept of reverse design used to develop total contents for the apparel industry. 1. The results of the experiment proved that ratio value was significantly efficient than absolute value of curvature variation to extract feature points in the armscye circumference 2. For the shoulder(1st and 2nd quadrant) and front armhole(3rd quadrant) parts of the armscye circumference, frame remodeling with the positive point of inflection led to the completion of a highly reproducible frame. 3. Similarly, even for the rear armhole part(4th quadrant) in the armscye circumference, it was found that frame remodeling using the positive maximum point of inflection resulted in highly reproducible body shape with the maximum point of inflection situated within the range of split angles $305^{\circ}{\sim}330^{\circ}$, while frame remodeling using simultaneously the two largest points of inflection including maximum point of inflection led to highly reproducible body shape with the maximum point of inflection out of the range $305^{\circ}{\sim}330^{\circ}$. 4. Based upon the optimal frame design algorithm developed in this study, section-specific feature points in the armscye circumference were extracted depending on the rate of curvature variation and remodeling with spline curves was conducted. The results indicate a remarkably high reproducibility(98.6%) and suggest that the algorithm developed in this study is suitable for human body modeling.

A Study on Art Nouveau Style Fashion Design -Focusing on Flower Pattern-

  • Kim, Mi-Young;Cho, Kyu-Hwa
    • Journal of Fashion Business
    • /
    • v.7 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • This study has as its primary aims the following: to create a fashion design based on the aesthetic value of Art Nouveau which flourished from the end of 19 century to the beginning of 20 century. In this thesis, two themes, Rose Aroma and Iris Memory are selected among the flower patterns and are used to create two works. First, the Rose Aroma theme is for an evening dress of S-curve style made with Silk Jacquard based on rose image of Art Nouveau. For decoration, artificial rose and its stem, and leaves are used to highlight hip line. By such design associated with a flower garden, cubic effects are expressed as a design point. Second, the Iris Memory theme is for a wedding dress made with tulle based on Iris image of Art Nouveau. This dress has a special point in its top bra, underwear used like an outer garment, involving spangle, beads, pearl, and cubic in order to enhance its visual effect. These works are significant in presenting the development possibilities of various fashion designs by introducing Art Nouveau style into diverse modern fashions.

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.

A universal design method using 3 Point task analysis and 9 universal design items

  • Yamaoka, Toshiki
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.144-151
    • /
    • 2002
  • In order to examine universal desist I have developed two analytical methodologies based on 3P(point) task analysis: structured task analysis and task matrix analysis. I also extracted me universal design items, namely (1) adjustment (2) redundancy, (3) specification and function transparency, (4) feedback and (5) error tolerance, (6) effective acquisition of information, (7) ease of understanding and judgment (8) comfortable operation, and (9) continuity of information and operation. Structured task analysis is used to uncover problems in each of the tasks constituting a job for each functionally challenged condition of users, and solutions to the extracted problems are examined in terms of the above-mentioned nine universal design items. Task matrix analysis calls for the production of a table for each task in a job. In each table, nine items from the columns, and the horizontal rows list all disability types. Then, solutions are formulated for each cell formed by the intersecting columns and rows. Using these two analysis methods, T have conducted a verification experiment for the universal design of a public bus. The results of the research have enabled me to propose various solutions from a system-based perspective, instead of coming up with the superficial and isolated solutions which are normally produced when conventional analytical methods are used.

  • PDF

RBDO analysis of the aircraft wing based aerodynamic behavior

  • El Maani, Rabii;Makhloufi, Abderahman;Radi, Bouchaib;El Hami, Abdelkhalak
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • The need of progress in engineering designs especially for aerospace structure is nowadays becoming a major industry request. The objectives of this work are to quantify the influence of material and operational uncertainties on the performance of the aerodynamic behavior of an Aircraft Wing, and to give a description of the most commonly used methods for reliability based design optimization (RBDO) to point out the advantages of the application of this method in the design process. A new method is proposed, called Safest Point (SP) that can efficiently give the reliability-based optimum solution for freely vibrating structures with and without fluid flow.

Modeling of the Spatial Structures for Dynamic Analysis and Evaluation of Performance Point Based on Capacity Spectrum Method (동적해석을 위한 대공간 구조물의 모델링 및 능력스펙트럼법에 의한 성능점 산정)

  • Kan, Eun-Young;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.49-57
    • /
    • 2006
  • Performance based seismic design is a very efficient method in evaluating the seismic capacity of building. In this study, the method estimating the performance point of the spatial structures based on capacity spectrum method(CSM) is proposed. And for efficient evaluation for the performance point of the spatial structures, the algorithm to convert spatial structural system to ESDOF system is proposed. Its efficiency is confirmed by comparing with time history analysis of full model. And dynamic behaviors of spatial structures are examined by using this method. At last, evaluation of structural performance according to variation of stiffness after plastic deformation is carried out.

  • PDF

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

A Study on the On-Line Fuzzy ULTC Controller Design Based on Multiple Load Center Points (다중 부하중심점에 기반한 온라인 퍼지 ULTC 제어기 설계에 대한 연구)

  • Ko, Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.514-521
    • /
    • 2006
  • The existing ULTC operation control strategy based on the measured data deteriorates the voltage compensation capability making the efficient corresponding to the load variation difficult by following the fixed load center point voltage. Accordingly, this paper proposes a new on-line fuzzy ULTC controller based on the designed multiple load center points which can improve the voltage compensation capability of ULTC and minimize voltage deviation by moving in real-time the load center point according to the load variation to an adequate position among the multiple load center points designed using the clustering technique. The Max-Min distance technique is adopted as the clustering technique for the decision of multiple load points from measured MTr load current and PTr voltage, and the minimum distance classifier is adopted for the decision of fuzzy output membership function. To verify the effectiveness of the proposed strategy, Visual C++ MFC-based simulation environments is developed. Finally, the superiority the proposed strategy is proved by comparing the fuzzy ULTC operation control results based on multiple load center points with the existing ULTC operation control results based on fixed load center point using the data for three day.