• Title/Summary/Keyword: Point pollutant load

Search Result 180, Processing Time 0.024 seconds

Watershed Modeling Research for Receiving Water Quality Management in Hwaseong Reservoir Watershed (화성호 유역의 수질관리를 위한 유역모델링 연구)

  • Jang, Jae-Ho;Kang, Hyeong-Sik;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.819-832
    • /
    • 2012
  • HSPF model based on BASINS was applied for the Hwaseong Reservoir watershed (HRW) to evaluate the feasibility of water quality management. The watershed was divided into 45 sub-basins considering various watershed environment. Streamflow was calibrated based on the measured meteorological data, discharge data of treatment plants and observed streamflow data for 2010 year. Then the model was calibrated against the field measurements of water qualities, including BOD, T-N and T-P. In most cases, there were reasonable agreements between observed and predicted data. The validated model was used to analyze the characterization of pollutant load from study area. As a result, Non-point source pollutant loads during the rainy season was about 66~78% of total loads. In rainy-season, water quality parameters depended on precipitation and pollutant loads patterns, but their concentration were not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. As another result of evaluation for load duration curves, in order to improve water qualities to the satisfactory level, the watershed managements considering both time-variant and pollution sources must be required in the HRW. Overall, it was found that the model could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Characteristics of Non-Point Sources Pollutant Loads at Paddy Plot Located at the Valley Watershed during Irrigation Periods (관개기 곡간지 유역 필지논에서의 비점원오염물질 유출특성)

  • Han, Kuk-Heon
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.94-102
    • /
    • 2011
  • The aim of this study was to evaluate the load of non-point sources pollutant at a paddy plot located at the valley watershed during irrigation period. Irrigation, runoff and water quality data in the paddy plot were analyzed periodically from June 1 to October 31 in 2005. The observed amount of precipitation, irrigation, runoff for the experimental paddy plot during the irrigation period was 1,297.8, 223.2, and 825.4mm, respectively. Total-N concentrations ranged from 3.73 to 18.10mg/L, which was generally higher than the quality standard of agricultural water (1.0mg/L). Total-P concentrations ranged from 0.111 to 0.243mg/L and the average was 0.139mg/L. The observed runoff pollutants loadings from the paddy plot were measured as 34.4 kg/ha for T-N, 1.0 kg/ha for T-P and 213.8 kg/ha for SS. The non-point sources pollutant load in drainage water depends on rainfall and surface drainage water amount from the paddy plot. We are considering that these results were affected by rainfall as well as hydrological condition, soil management, whether or not fertilizer application, cropping, rice straw and plowing.

  • PDF

A Study on Estimated Pollutant Delivery Load for the Basic Plan of TPLC (수질오염총량관리계획 수립을 위한 유달부하량 추정방법 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok;Lee, Sung Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.4
    • /
    • pp.375-383
    • /
    • 2016
  • Total Pollution Load Control (TPLC) calculates and manages the allowable pollutant load that is discharged from the watershed, which can meet the water quality target. Delivery Ratio (DR) is generally used for predicting the variation of pollutant mass balance between the pollutants discharged from the watershed and a certain point in the stream, and it is very important for estimation of accurate allowable pollutant load. The concept of DR in TPLC is different from prevalent DR, because DR in TPLC includes both the discharge of pollutants from the watershed and the delivery mechanism. Therefore, DR in TPLC should be estimated by using a proper and unified methodology. The appropriate method and equation for estimation of DR in TPLC was developed through the review of various methodologies, and the applicability of the equation was evaluated in a study area (Geumho A). Determination coefficients (R2) of regression were shown to be relatively high (BOD 0.71~0.87, T-N 0.86~0.90, T-P 0.62~0.69). Applicability of the developed methodology and equations was evaluated as appropriate for TPLC, and it is suggested.

Analysis of Efficiency of Pollution Reduction Scenarios by Flow Regime Using SWAT Model - A case study for Dalcheon Basin - (SWAT 모형을 활용한 유황별 비점오염 저감 효율 분석 - 달천 유역을 대상으로 -)

  • Kim, Soohong;Hong, Jiyeong;Park, Woonji;Kim, Jonggun;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.469-482
    • /
    • 2021
  • The recent climate change and urbanization have seen an increase in runoff and pollutant loads, and consequently significant negative water pollution. The characteristics of the pollutant loads vary among the different flow regime depending on their source and transport mechanism, However, pollutant load reduction based on flow regime perspectives has not been investigated thoroughly. Therefore, it is necessary to analyze the effects of concentration on pollutant load characteristics and reductions from each flow regime to develop efficient pollution management. As non-point pollutants continuously increase due to the increase in impervious area, efficient management is necessary. Therefore, in this study, 1) the characteristics of pollutant sources were analyzed at the Dalcheon Basin, 2) reduction of nonpoint pollution, and 3) reduction efficiency for flow regimes were analyzed. By analyzing the characteristics of the Dalcheon Basin, a reduction efficiency scenario for each pollutant source was constructed. The efficiency analysis showed 0.06% to 5.62% for the living scenario, 0.09 to 24.62% for the livestock scenario, 0.17% to 12.81% for the industry scenario, 9.45% to 38.45% for the land scenario, and 9.8% to 39.2% for the composite scenario. Therefore, various pollution reduction scenarios, taking into account the characteristics of pollutants and flow regime characteristics, can contribute to the development of efficient measurements to improve water quality at various flow regime perspectives in the Dalcheon Basin.

Water Quality Management of Kwangyang Bay by Point Pollution Source Control (점원 오염부하 제어에 의한 광양만의 수질관리)

  • Lee Dae-In;Park Chung-Kil;Cho Hyeon-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.28-39
    • /
    • 2001
  • The eco-hydrodynamic model was used to simulation water quality of Kwangyang Bay according to the environmental variation for appropriate water quality management. The mean concentration of COD was 3.3㎎/L, this exceeded the third class of water quality criteria. Waste water discharging loads showed approximately 90% of total pollutant loads. For satisfaction to below 10㎍/L of Chl. a and 2㎎/L of COD, above 35% reduction of present pollutant loads of point sources are needed.

  • PDF

Quantitative Assessment of Nonpoint Source Load in Nakdong River Basin

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.7-23
    • /
    • 2014
  • This study estimates unit for the nonpoint source(NPS), classified according to the existing Level-1(large scale) land cover map, by monitoring the measurement results from each Level-2(medium scale) land cover map, and verifies the applicability by comparison with previously calculated units using the Level-1 land cover map. The NPS pollutant loading for a basin is evaluated by applying the NPS pollutant unit to Dongcheon basin using the Level-2 land cover map. In addition, the BASINS/HSPF(Better Assessment Science Integrating point & Non-point Sources/Hydrological Simulation Program-Fortran) model is used to evaluate the reliability of the NPS pollutant loading computation by comparing the loading during precipitation in the Dongcheon basin. The NPS pollutant unit for the Level-2 land cover map is computed based on precipitation measured by the Sangju observatory in the Nakdong River basin. Finally, the feasibility of the NPS pollutant loading computation using a BASINS/HSPF model is evaluated by comparing and analyzing the NPS pollutant loading when estimated unit using the Level-2 land cover map and simulated using the BASINS/HSPF models.

Characteristics of Non-Point Pollutant Runoff in Highland Field Fields through Long-term Monitoring (장기 모니터링을 통한 고랭지 밭 지역의 비점오염물질 유출특성)

  • Lee, Su In;Shin, Jae Young;Shin, Min Hwan;Ju, So-Hui;Seo, Ji Yeon;Park, Woon Ji;Lee, Jae Young;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.85-96
    • /
    • 2017
  • In this research, I performed rainfall monitoring by selecting the spot which can represent high altitude cool farm region in recent 3 years, and tried to understand the characteristic of outflow of non-point pollutants coming from high altitude cool farm region. As a result, it was shown that reducing rainfall runoff in highland farm area can reduce non-point pollution load and should consider priority to reduce runoff through management resources when selecting abatement method. Additionally, it is judged that reduction method related to base run-off should be selected by performing research on material motion of TN.

Characteristics of Non-point Pollutant Discharge from Upper Watershed of Seomjin Dam during Rainy Season (섬진강댐 상류 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Dong-Heui;Yoo, Seung-Joon;Kim, Ji-Hoon;Lim, Ik-Hyun;Kwon, Ji-Young;Chung, Paul-Gene
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • This study was carried out to investigate the characteristics of the pollutant discharge from non-point source and to estimate the unit loads of the pollutant discharge from the upper watershed of Seomjin Dam during rainy season. The upper watershed of Seomjin Dam is located in the middle of Jeonbuk province is formed two tributaries mainly. A sub-branch stream of those tributaries is Imsil stream of which flow rate is about 13% of the main stream of Seomjin reservoir normally. On the basis of measurement result in this study, the water quality of Imsil stream was fluctuated highly and the quantity of measured pollutant discharge was higher than the value calculated with the proportion of flow rate during dry season. On the contrary, during rainy season the mean values of flow rate and water quality were higher than the quartile according to the statistical analysis. That means rainfall can influence strongly on the water quality of the upper watershed of Seomjin reservoir. Among the several criteria of water quality, SS discharge was most sensitive to the flow rate variation of stream, which was fluctuated in proportion of rainfall, basically. It was evaluated the event mean concentration (EMC) of non-point source pollutants depending on rainfall events as well. Though the pollutant discharge unit of Imsil stream was lower than the main stream of Seomjin reservoir, the EMC value of Imsil stream was higher than the main stream of Seomjin reservoir.

Study on the Discharge Characteristics of Non-point Pollutant Source in the Urban Area of the Youngsan-River Basin (영산강 유역 도시지역의 비점오염원 배출특성에 관한 연구)

  • Jin, Young-Hoon;Park, Sung-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.605-613
    • /
    • 2006
  • Discharge characteristics of non-point source pollutant and load amount of the discharge in the urban area were investigated in the Pungyeongjeong-stream basin and the Yongbong-stream basin in this present study. The land use of the studied basins were divided into paddy field, industrial complex area, combined sewage system, separate sewer system and point sources discharge. The descriptive statistics on the event mean concentrations (EMCs) of non-point pollutants by the the land use showed in the range of 4.43-32.28 mg/L for BOD and 8.27~56.17 mg/L for COD. The highest concentration was shown from the combined sewage system. The EMC of SS at the paddy field in the Pungyeongjeong-stream basin showed the highest range with the values ~ from 35.76 to 358.86 mg/L, which might have been influenced by a levee construction in the adjacent of the area. The relatively high concentration values of 4.43~32.28 mg/L and 1.617.13 mg/L emerged from TN and TP,respectively, at the discharge points of the both stream basins.

Prediction of the Pollutant Loading into Estuary Lake according to Non-cultivation and Cultivation conditions of Reclaimed Tidal Land (담수호 유입 오염부하량의 간척농지 영농 전.후 변화 예측)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Yang, Hong-Mo;Han, Kuk-Heon;Han, Kyung-Soo
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.27-36
    • /
    • 2001
  • Estimation of current and future loading from watershed is necessary for the sound management of water quality of an estuary lake. Pollution sources of point and non-point source pollution were surveyed and Identified for the Koheung watershed. Unit factor method was used to estimate potential pollutant load from the watershed of current conditions. Flow rate and water qualify of base flow and storm-runoff were monitored in the main streams of the watershed. Estimation of runoff pollutant loading from the watershed into the lake in current conditions was conducted by GWLF model after calibration using observed data. Prospective pollutant loading from the reclaimed paddy fields under cultivation conditions was estimated using the modified CREAMS model. As a result, changes of pollutant loading into estuary lake according to non-cultivation and cultivation conditions of reclaimed tidal land were estimated.

  • PDF