• Title/Summary/Keyword: Point cloud registration

Search Result 50, Processing Time 0.02 seconds

Registration-free 3D Point Cloud Data Acquisition Technique for as-is BIM Generation Using Rotating Flat Mirrors

  • Li, Fangxin;Kim, Min-Koo;Li, Heng
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.3-12
    • /
    • 2020
  • Nowadays, as-is BIM generation has been popularly adopted in the architecture, engineering, construction and facility management (AEC/FM) industries. In order to generate a 3D as-is BIM of a structural component, current methods require a registration process that merges different sets of point cloud data obtained from multiple locations, which is time-consuming and registration error-prone. To tackle this limitation, this study proposes a registration-free 3D point cloud data acquisition technique for as-is BIM generation. In this study, small-size mirrors that rotate in both horizontal and vertical direction are used to enable the registration-free data acquisition technique. First, a geometric model that defines the relationship among the mirrors, the laser scanner and the target component is developed. Second, determinations of optimal laser scanner location and mirror location are performed based on the developed geometrical model. To validate the proposed registration-free as-is BIM generation technique, simulation tests are conducted on key construction components including a PC slab and a structural wall. The result demonstrates that the registration-free point cloud data acquisition technique can be applicable in various construction elements including PC elements and structural components for as-is BIM generation.

  • PDF

Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites (건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Comparing to general scanning data, the 3D digital map for large construction sites and complex buildings consists of millions of points. The large construction site needs to be scanned multiple times by drone photogrammetry or terrestrial laser scanner (TLS) survey. The scanned point cloud data are required to be registrated with high resolution and high point density. Unlike the registration of 2D data, the matrix of translation and rotation are used for registration of 3D point cloud data. Archiving high accuracy with 3D point cloud data is not easy due to 3D Cartesian coordinate system. Therefore, in this study, iterative closest point (ICP) registration method for improve accuracy of 3D digital map was employed by different overlap ratio on 3D digital maps. This study conducted the accuracy test using different overlap ratios of two digital maps from 10% to 100%. The results of the accuracy test presented the optimal overlap ratios for an ICP registration method on digital maps.

Accuracy Evaluation by Point Cloud Data Registration Method (점군데이터 정합 방법에 따른 정확도 평가)

  • Park, Joon Kyu;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • 3D laser scanners are an effective way to quickly acquire a large amount of data about an object. Recently, it is used in various fields such as surveying, displacement measurement, 3D data generation of objects, construction of indoor spatial information, and BIM(Building Information Model). In order to utilize the point cloud data acquired through the 3D laser scanner, it is necessary to make the data acquired from many stations through a matching process into one data with a unified coordinate system. However, analytical researches on the accuracy of point cloud data according to the registration method are insufficient. In this study, we tried to analyze the accuracy of registration method of point cloud data acquired through 3D laser scanner. The point cloud data of the study area was acquired by 3D laser scanner, the point cloud data was registered by the ICP(Iterative Closest Point) method and the shape registration method through the data processing, and the accuracy was analyzed by comparing with the total station survey results. As a result of the accuracy evaluation, the ICP and the shape registration method showed 0.002m~0.005m and 0.002m~0.009m difference with the total station performance, respectively, and each registration method showed a deviation of less than 0.01m. Each registration method showed less than 0.01m of variation in the experimental results, which satisfies the 1: 1,000 digital accuracy and it is suggested that the registration of point cloud data using ICP and shape matching can be utilized for constructing spatial information. In the future, matching of point cloud data by shape registration method will contribute to productivity improvement by reducing target installation in the process of building spatial information using 3D laser scanner.

A Study on the Effective Preprocessing Methods for Accelerating Point Cloud Registration

  • Chungsu, Jang;Yongmin, Kim;Taehyun, Kim;Sunyong, Choi;Jinwoo, Koh;Seungkeun, Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.111-127
    • /
    • 2023
  • In visual slam and 3D data modeling, the Iterative Closest Point method is a primary fundamental algorithm, and many technical fields have used this method. However, it relies on search methods that take a high search time. This paper solves this problem by applying an effective point cloud refinement method. And this paper also accelerates the point cloud registration process with an indexing scheme using the spatial decomposition method. Through some experiments, the results of this paper show that the proposed point cloud refinement method helped to produce better performance.

Efficient point cloud data processing in shipbuilding: Reformative component extraction method and registration method

  • Sun, Jingyu;Hiekata, Kazuo;Yamato, Hiroyuki;Nakagaki, Norito;Sugawara, Akiyoshi
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.202-212
    • /
    • 2014
  • To survive in the current shipbuilding industry, it is of vital importance for shipyards to have the ship components' accuracy evaluated efficiently during most of the manufacturing steps. Evaluating components' accuracy by comparing each component's point cloud data scanned by laser scanners and the ship's design data formatted in CAD cannot be processed efficiently when (1) extract components from point cloud data include irregular obstacles endogenously, or when (2) registration of the two data sets have no clear direction setting. This paper presents reformative point cloud data processing methods to solve these problems. K-d tree construction of the point cloud data fastens a neighbor searching of each point. Region growing method performed on the neighbor points of the seed point extracts the continuous part of the component, while curved surface fitting and B-spline curved line fitting at the edge of the continuous part recognize the neighbor domains of the same component divided by obstacles' shadows. The ICP (Iterative Closest Point) algorithm conducts a registration of the two sets of data after the proper registration's direction is decided by principal component analysis. By experiments conducted at the shipyard, 200 curved shell plates are extracted from the scanned point cloud data, and registrations are conducted between them and the designed CAD data using the proposed methods for an accuracy evaluation. Results show that the methods proposed in this paper support the accuracy evaluation targeted point cloud data processing efficiently in practice.

A Modified Method for Registration of 3D Point Clouds with a Low Overlap Ratio (적은 오버랩에서 사용 가능한 3차원 점군 정합 방법)

  • Kim, Jigun;Lee, Junhee;Park, Sangmin;Ko, Kwanghee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.5
    • /
    • pp.11-19
    • /
    • 2018
  • In this paper, we propose an algorithm for improving the accuracy and rate of convergence when two point clouds with noise and a low overlapping area are registered to each other. We make the most use of the geometric information of the underlying geometry of the point clouds with noise for better accuracy. We select a reasonable region from the noisy point cloud for registration and combine a modified acceleration algorithm to improve its speed. The conventional accuracy improvement method was not possible in a lot of noise, this paper resolves the problem by selecting the reasonable region for the registration. And this paper applies acceleration algorithm for a clone to low overlap point cloud pair. A simple algorithm is added to the conventional method, which leads to 3 or 4 times faster speed. In conclusion, this algorithm was developed to improve both the speed and accuracy of point cloud registration in noisy and low overlap case.

Rotational Characteristics of Target Registration Error for Contour-based Registration in Neuronavigation System: A Phantom Study (뉴로내비게이션 시스템 표면정합에 대한 병변 정합 오차의 회전적 특성 분석: 팬텀 연구)

  • Park, Hyun-Joon;Mun, Joung Hwan;Yoo, Hakje;Shin, Ki-Young;Sim, Taeyong
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, we investigated the rotational characteristics which were comprised of directionality and linearity of target registration error (TRE) as a study in advance to enhance the accuracy of contour-based registration in neuronavigation. For the experiment, two rigid head phantoms that have different faces with specially designed target frame fixed inside of the phantoms were used. Three-dimensional coordinates of facial surface point cloud and target point of the phantoms were acquired using computed tomography (CT) and 3D scanner. Iterative closest point (ICP) method was used for registration of two different point cloud and the directionality and linearity of TRE in overall head were calculated by using 3D position of targets after registration. As a result, it was represented that TRE had consistent direction in overall head region and was increased in linear fashion as distance from facial surface, but did not show high linearity. These results indicated that it is possible for decrease TRE by controlling orientation of facial surface point cloud acquired from scanner, and the prediction of TRE from surface registration error can decrease the registration accuracy in lesion. In the further studies, we have to develop the contour-based registration method for improvement of accuracy by considering rotational characteristics of TRE.

Research of fast point cloud registration method in construction error analysis of hull blocks

  • Wang, Ji;Huo, Shilin;Liu, Yujun;Li, Rui;Liu, Zhongchi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.605-616
    • /
    • 2020
  • The construction quality control of hull blocks is of great significance for shipbuilding. The total station device is predominantly employed in traditional applications, but suffers from long measurement time, high labor intensity and scarcity of data points. In this paper, the Terrestrial Laser Scanning (TLS) device is utilized to obtain an efficient and accurate comprehensive construction information of hull blocks. To address the registration problem which is the most important issue in comparing the measurement point cloud and the design model, an automatic registration approach is presented. Furthermore, to compare the data acquired by TLS device and sparse point sets obtained by total station device, a method for key point extraction is introduced. Experimental results indicate that the proposed approach is fast and accurate, and that applying TLS to control the construction quality of hull blocks is reliable and feasible.

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

A Fast Correspondence Matching for Iterative Closest Point Algorithm (ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법)

  • Shin, Gunhee;Choi, Jaehee;Kim, Kwangki
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.