• Title/Summary/Keyword: Point cloud

Search Result 840, Processing Time 0.025 seconds

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

Spherical-Coordinate-Based Guiding System for Automatic 3D Shape Scanning (3D 형상정보 자동 수집을 위한 구면좌표계식 스캐닝 시스템)

  • Park, Sang Wook;Maeng, Hee-Young;Lee, Myoung Sang;Kwon, Kil Sun;Na, Mi-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1029-1036
    • /
    • 2014
  • Several types of automatic 3D scanners are available for use in the 3D scanning industry, e.g., an automatic 3D scanner that uses a robot arm and one that uses an automatic rotary table. Specifically, these scanners are used to obtain a 3D shape using automatic assisting devices. Most of these scanners are required to perform numerous operations, such as merging, aligning, trimming, and filling holes. We are interested in developing an automatic 3D shape collection device using a spherical-coordinate-based guiding system. Then, the aim of the present study is to design an automatic guiding system that can automatically collect 3D shape data. We develop a 3D model of this system and measuring data which are collected by a personal computer. An optimal design of this system and the geometrical accuracy of the measured data are both evaluated using 3D modeling software. The developed system is then applied to an object having a highly complex shape and manifold sections. Our simulation results demonstrate that the developed system collects higher-quality 3D data than the conventional method.

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Polar Oils and Nonionic Surfactant (극성 오일, 비이온성 계면활성제를 포함한 계에서의 Videomicroscopy를 이용한 동적 거동에 관한 연구)

  • Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.473-481
    • /
    • 1997
  • Enhanced videomicroscopy was used to observe the dynamic behavior which occurred when water containing pure nonionic surfactant was carefully contacted with equal volumes of polar oils such as oleyl alcohol and oleic acid at various temperatures. A key component of the system is a vertical-stage microscope which provides for stable interfaces by locating the oil above the denser aqueous phase. This arrangement allowed intermediate phases formed at the surface of contact to be clearly observed, as well as any spontaneous emulsification which developed. Contacting experiments with $C_{12}E_5$ as the surfactant and with pure oleyl alcohol and oleic acid soils showed little activity below the cloud point but vigorous activity at higher temperatures including formation of an intermediate lamellar liquid crystalline phase. Diffusion path theory, which allows prediction of spontaneous emulsification resulting from diffusion and of intermediate phase formation during contacting processes, was used to understand the dynamic behavior seen during contacting experiments. Tentative diffusion paths for the contacting experiments with pure oleyl alcohol were presented with the aid of a partial phase diagram of the oleyl alcohol-water-$C_{12}E_5$ system.

  • PDF

The recognition prioritization of road environment for supporting autonomous vehicle (자율주행차량의 도로환경 인식기술 지원을 위한 우선순위 선정 방안)

  • Park, Jaehong;Yun, Duk Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.595-601
    • /
    • 2018
  • The era of autonomous vehicles, which drive themselves and in whose operation the driver does not intervene, is fast approaching. The safety of autonomous vehicles can be guaranteed only if they recognize the road infrastructure. However, the road infrastructure consists of road safety facilities, traffic operation systems, and cross-sectional concerns, which include a variety of components, such as types, shapes, and sizes. Therefore, it is necessary to prioritize the road information. This study was conducted to select the priority with which the road infrastructure attributes should be acquired using the AHP (Analytical Hierarchy Process) method. The road infrastructure attributes were categorized into 2 levels, levels 1 and 2, which consisted of 3 and 26 types of attributes, respectively. As a result of the AHP analysis, it was found that the highest priorities of the road infrastructure are the road safety facilities, traffic operation systems and cross sectional concerns. Also, in level-2, the priorities of the safety barriers (road safety facilities), traffic signals (traffic operation systems), and the median (cross sectional) are the highest. Also, this study provides application examples of road infrastructure extraction with the Point Cloud. The results are expected to support the recognition of technology for autonomous vehicles.

Usability Evaluation of the Drone LiDAR Data for River Surveying (하천측량을 위한 드론라이다 데이터의 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.592-597
    • /
    • 2020
  • Currently, river survey data is mainly performed by acquiring longitudinal and cross-sectional data of rivers using total stations or the GNSS(Global Navigation Satellite System). There is not much research that addresses the use of LiDAR(Light Detection and Ranging)systems for surveying rivers. This study evaluates the applicability of using LiDAR data for surveying rivers The Ministry of Land, Infrastructure and Transport recently launched a drone-based river fluctuation survey. Pilot survey projects were conducted in major rivers nationwide. Studies related to river surveying were performed using the ground LiDAR(Light Detection And Ranging)system.Accuracy was ensured by extracting the linearity of the object and comparing it with the total station survey performance. Data on trees and other features were extracted to generate three-dimensional geospatial information for the point-cloud data on the ground.Deviations were 0.008~0.048m. and compared with the results of surveying GNSS and the use of drone LiDAR data. Drone LiDAR provided accurate three-dimensional spatial information on the entire target area. It was able to reduce the shaded area caused by the lack of surveying results of the target area. Analyses such as those of area and slope of the target sites are possible. Uses of drones may therefore be anticipated for terrain analyses in the future.

Characterization and Preparation of Polyimide Copolymer Membranes by Non-Solvent Induced Phase Separation Method (비용매 유도 상전이법을 이용한 공중합체 폴리이미드 분리막의 제조 및 특성평가)

  • Lee, Jung Moo;Park, Jeong Ho;Kim, Deuk Ju;Lee, Myung Gun;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.343-351
    • /
    • 2015
  • In this study, we synthesis polyimide with high gas selectivity using 2,2-bis(3,4-carboxylphenyl) hexafluoropropane, 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) and 4,4-Methylenedianiline (p-MDA), and then the asymmetric membrane was fabricated by non-solvent phase separation method. To confirm the property change of the membrane using different solvent, we measured and compared the viscosity of the polymer solution, cloud point and non-solvent phase separation coefficient. The morphology and gas separation property of membrane prepared by phase separation method was confirmed using Field Emission Scanning Electron Microsope and the single gas permeation measurement apparatus. The single gas ($CH_4$, $N_2$, $O_2$, $CO_2$) permeation property and selectivity value of the membrane prepared with NMP was higher than the membrane prepared with DMAc. We confirmed that the gas selectivity of the membrane increased and the permeation property decreased with increasing of the solvent evaporation time.

A Study on the Deep Neural Network based Recognition Model for Space Debris Vision Tracking System (심층신경망 기반 우주파편 영상 추적시스템 인식모델에 대한 연구)

  • Lim, Seongmin;Kim, Jin-Hyung;Choi, Won-Sub;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.794-806
    • /
    • 2017
  • It is essential to protect the national space assets and space environment safely as a space development country from the continuously increasing space debris. And Active Debris Removal(ADR) is the most active way to solve this problem. In this paper, we studied the Artificial Neural Network(ANN) for a stable recognition model of vision-based space debris tracking system. We obtained the simulated image of the space environment by the KARICAT which is the ground-based space debris clearing satellite testbed developed by the Korea Aerospace Research Institute, and created the vector which encodes structure and color-based features of each object after image segmentation by depth discontinuity. The Feature Vector consists of 3D surface area, principle vector of point cloud, 2D shape and color information. We designed artificial neural network model based on the separated Feature Vector. In order to improve the performance of the artificial neural network, the model is divided according to the categories of the input feature vectors, and the ensemble technique is applied to each model. As a result, we confirmed the performance improvement of recognition model by ensemble technique.

Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process (포토레지스트 공정에서 높은 선택성을 가지는 초임계 이산화탄소/n-butyl acetate 공용매 시스템 연구)

  • Kim, Dong Woo;Heo, Hoon;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, the supercritical carbon dioxide ($scCO_2$)/ n-butyl acetate (n-BA) co-solvent system was employed to remove an unexposed negative photoresist (PR) from the surface of a silicon wafer. In addition, the selectivity of the $scCO_2$/n-BA co-solvent system was confirmed for the unexposed and exposed negative PR. Optimum conditions for removal of the unexposed PR were obtained from various conditions such as pressure, temperature and n-BA ratio. The n-BA was highly soluble in $scCO_2$ without cloud point and phase separation in mostly experimental conditions. However, the $scCO_2$/n-BA co-solvent was phase separated at 100 bar, above $80^{\circ}C$. The unexposed and exposed PR was swelled in $scCO_2$ solvent at all experimental conditions. The complete removal of unexposed PR was achieved from the reaction condition of 160 bar, 10 min, $40^{\circ}C$ and 75 wt% n-BA in $scCO_2$, as measured by ellipsometry. The exposed photoresist showed high stability in the $scCO_2$/n-BA co-solvent system, which indicated that the $scCO_2$/n-BA co-solvent system has high selectivity for the PR removal in photo lithograph process. The $scCO_2$/n-BA co-solvent system not only prevent swelling of exposed PR, but also provide efficient and powful performance to removal unexposed PR.

3D Indoor Modeling Based on Terrestrial Laser Scanning (지상레이저스캐닝 기반 3차원 실내 모델링)

  • Hong, Seung Hwan;Cho, Hyoung Sig;Kim, Nam Hoon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.525-531
    • /
    • 2015
  • According to the increasing demand for 3D indoor spatial information, the utilization of a terrestrial laser scanner comes to the fore. However, the research for the comparison between a terrestrial laser scanning method and a traditional surveying method is insufficient. The paper evaluated the time-efficiency and the locational accuracy of an AMCW type and a direct TOF type of terrestrial laser scanning methods in comparison with the observation using a total station. As a result, an AMCW type showed higher time-efficiency than a direct TOF type and the RMSE between the two types of data was ${\pm}1mm$. Moreover, the terrestrial laser scanning method showed twice higher time-efficiency than the observation using a total station and the RMSE between the two data was ${\pm}3.4cm$. The results indicate that the terrestrial laser scanning method has better profitability and performance for 3D indoor modeling than the traditional survey using a total station. In the future, a terrestrial laser scanner can be efficiently utilized in the construction of 3D indoor spatial information.

Estimation of fresh weight for chinese cabbage using the Kinect sensor (키넥트를 이용한 배추 생체중 추정)

  • Lee, Sukin;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.205-213
    • /
    • 2018
  • Development and validation of crop models often require measurements of biomass for the crop of interest. Considerable efforts would be needed to obtain a reasonable amount of biomass data because the destructive sampling of a given crop is usually used. The Kinect sensor, which has a combination of image and depth sensors, can be used for estimating crop biomass without using destructive sampling approach. This approach could provide more data sets for model development and validation. The objective of this study was to examine the applicability of the Kinect sensor for estimation of chinese cabbage fresh weight. The fresh weight of five chinese cabbage was measured and compared with estimates using the Kinect sensor. The estimates were obtained by scanning individual chinese cabbage to create point cloud, removing noise, and building a three dimensional model with a set of free software. It was found that the 3D model created using the Kinect sensor explained about 98.7% of variation in fresh weight of chinese cabbage. Furthermore, the correlation coefficient between estimates and measurements were highly significant, which suggested that the Kinect sensor would be applicable to estimation of fresh weight for chinese cabbage. Our results demonstrated that a depth sensor allows for a non-destructive sampling approach, which enables to collect observation data for crop fresh weight over time. This would help development and validation of a crop model using a large number of reliable data sets, which merits further studies on application of various depth sensors to crop dry weight measurements.