• Title/Summary/Keyword: Point Stress Criterion

Search Result 62, Processing Time 0.02 seconds

A Comparison of Bearing Capacity Equations for a Single Pile Considering Negative Skin Friction (부주면마찰력을 고려한 단말뚝의 허용지지력 공식 분석)

  • Lee, Sung-June;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.27-37
    • /
    • 2010
  • Downdrag force develops when a pile is driven through a soil layer which will settle more than a pile. There is no obvious criterion for application of the current pile design method considering the negative skin friction. Therefore, in this study, numerical analyses were performed to investigate the behavior of a single pile subjected to negative skin friction and their results were used to determine the applicability of the current design method. Including three different sites in Song-do area and two different cases with friction pile and end bearing pile conditions, total six cases were considered. The load-settlement relationships and the neutral points were estimated for different end bearing conditions and the allowable bearing capacity of piles with negative skin friction was investigated through parametric studies. Based on the results showed that the negative skin friction made a major influence on the settlement of a pile and its stress. However the allowable bearing capacity may not be influenced by the negative skin friction. Compared with the allowable bearing capacity obtained from the ultimate bearing capacity with the safety factor of 3, the current design method with the safety factor of 3 underestimated the allowable bearing capacities regardless of the end bearing conditions. On the other hand, the current design method with the safety factor of 2 yielded reasonable results depending on the end bearing conditions.

A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks (점성균열 모델을 위한 국부단위분할이 적용된 무요소법)

  • Zi, Goangseup;Jung, Jin-kyu;Kim, Byeong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.861-872
    • /
    • 2006
  • The element free Galerkin method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum. The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by a branch enrichment function which does not have the LEFM stress singularity. The discrete equations are obtained directly from the standard Galerkin method since the enrichment is only for the displacement field, which satisfies the local partition of unity. Because only particles whose domains of influence are influenced by a crack are enriched, the system matrix is still sparse so that the increase of the computational cost is minimized. The condition for crack growth in dynamic problems is obtained from the material instability; when the acoustic tensor loses the positive definiteness, a cohesive crack is inserted to the point so as to change the continuum to a discontiuum. The crack speed is naturally obtained from the criterion. It is found that this method is more accurate and converges faster than the classical meshless methods which are based on the visibility concept. In this paper, several well-known static and dynamic problems were solved to verify the method.