• 제목/요약/키워드: Pneumatic rodless cylinder

검색결과 12건 처리시간 0.029초

로드리스 실린더의 수명 특성에 관한 연구 (A Study on the Life Characteristic of Rodless Cylinder)

  • 이충성;임재학;강보식
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권1호
    • /
    • pp.21-27
    • /
    • 2015
  • Pneumatic cylinders are classified into rod-type pneumatic cylinders and rodless pneumatic cylinders depending on the presence of the rod. Rodless cylinders have a constant area and have no deflection. Rodless cylinders are widely used in automatic systems requiring high-speed performance and high-precision transportation. However, the research of the pneumatic cylinder has been focused on the structure and life characteristics. In this research, aging characteristics and shape parameter analysis which are related to the lifetime were investigated. By conducting the lifetime tests with two different materials for the transfer plate, the failure mode and lifetime characteristics were analyzed. By the Anderson-Darling (A-D) verification based on the complete data set, the analysis results of lifetime distribution, shape parameter, and scale parameter were provided.

리커런트 신경회로망을 이용한 공압 로드레스 실린더의 정밀위치제어 (The Precision Position Control of the Pneumatic Rodless Cylinder Using Recurrent Neural Networks)

  • 노철하;김영식;김상희
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.84-90
    • /
    • 2003
  • This paper develops a control method that is composed of the proportional control algorithm and the learning algorithm based on the recurrent neural networks (RNN) for the position control of a pneumatic rodless cylinder. The proportional control algorithm is suggested for the modeled pneumatic system, which is obtained easily simplifying the system, and the RNN is suggested for the compensation of the modeling errors and uncertainties of the pneumatic system. In the proportional control, two zones are suggested in the phase plane. One is the transient zone for the smooth tracking and the other is the small movement zone for the accurate position control with eliminating the stick-slip phenomenon. The RNN is connected in parallel with the proportional control for the compensation of modeling errors and frictions, compressibilities, and parameter uncertainties in the pneumatic control system. This paper experimentally verifies the feasibility of the proposed control algorithm for such pneumatic systems.

신경회로망을 이용한 공압서보 XY-플로터의 운동제어 (Motion Control of a Pneumatic Servo XY-Plotter using Neural Network)

  • 황운규;조승호
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.603-609
    • /
    • 2004
  • This paper deals with the issue of Neural Network-based control for a rodless pneumatic cylinder system which is utilized for a pneumatic XY-plotter. In order to identify the system design parameters, the open loop response of a pneumatic rodless cylinder controlled by a pneumatic servovalve is investigated by applying a self-excited oscillation method. Based on the system design parameters, the PD feedback compensator is designed and then Neural Network is incorporated with it. The experiment of a trajectory tracking control using a PD-NN has been performed and proved its excellent performance by comparing with that of a PD feedback compensator.

Intelligent control of pneumatic actuator using On/Off solenoid valves

  • Insung Song;Sungman Pyo;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.65.2-65
    • /
    • 2002
  • This paper is concerned with the accurate position control of a rodless pneumatic cylinder using On/Off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem , switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated...on/off solenoid valve, load estimation, MPWM, Artificial neural network.

  • PDF

정밀 위치제어를 위한 공압 피스톤의 미소변위 이송방법 및 혼합 제어 알고리즘 개발 (Development of the Small-displacement-movement of a Pneumatic piston and the Hybrid Control Algorithm for Precision Position Control)

  • 노철하;김영식
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.40-45
    • /
    • 2001
  • This paper proposes a methodology for the small-displacement-movement of a piston and develops a hybrid control algorithm for the precision position control of a pneumatic rodless cylinder. The pneumatic system uses the voltage-proportional solenoid valves to minimum valve switching since the on/off type valves are create diffculties for accurate position control and induce a lot of valve switching. For the accurate position control a methodology for the small-displacement-movement of the piston is developed and identified experimentally. The main consideration on the development of the hybrid control law is to eliminate a stick-slip phenomenon in the pneumatic control system. This paper addresses these critical issues and presents experimental results for the pneumatic control system.

  • PDF

MPWM을 이용한 공압 실린더의 지능제어 (Intelligent control of pneumatic actuator using MPWM)

  • 송인성;표성만;안경관;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

벨로우즈형 로드리스 실린더 특성해석 및 실험에 관한 연구 (A Study on the Experiments and Characteristics Analysis of the Bellows Type Rodless Cylinder)

  • 김동수;김성종;배상규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.973-977
    • /
    • 2004
  • A pneumatic cylinder used to sliding seal which seal the element one to another in relative motion. It is difficult to accuracy control because of adhesion phenomenon. To confirm this phenomenon, it is carried to friction force test and analysis for bellows type rodless cylinder. In the rodless cylinder of this type, friction force test is very important. Through the theoretical analysis of shock absorber obtained the optimal design of bellows type rodless cylinder. As the result of the friction force test, LM Guide type is suitable for work under low friction force.

  • PDF

공압 NC축의 신경회로망 결합형 PID 제어 (Neural Network Based PID Control for Pneumatic NC Axes)

  • 박래서;조승호
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.105-111
    • /
    • 2006
  • This paper describes a Neural Network based PID control scheme for pneumatic NC axes. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional PID controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. The gains of PID controller are determined using a self tuning scheme. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PID control.

에너지 절약형 공기압 제어시스템 특성해석

  • 박재범;김동수;김형의;김기홍;염만오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.635-641
    • /
    • 1994
  • Recently, Improving the energy efficiency of a pneumatic system and reducing the consumption of compressed air were a concern of scholars at domestic and abroad. The using fields of a pneumatic system are widely used in factory automation of manufacturing line, chemical factories with explosiveness danger and petroleum industries etc. In particular, Pneumatic cylinder is applied to feeding work of workpiece, jig tools and press mechanism, reciprocation and rotary motion with rack and pinion. In this study, The experimental apparatus consisted to pneumatic cylinder, dual supply pressure regulator and solenoid valve. The dual supply pressure regulator connected to outlet port of solenoid valve. The supply pressure (4.5kgf/cm$\^$2/) of compressed air goes into the rodless chamber 1 to drive the pistion rod forward which is named working stage. The supply pressure(2kgf/cm$\^$2/) of compressed air goes into the rod chamber 2 to drive the piston rod backward which is named no-working stage. Accordingly, The research results of this study can be obtained to Energy-Saving Effects of the compressed air about 35%.

  • PDF

에너지 절약형 공기압 시스템 특성에 관한 연구 (A Study on the Energy Saving Type Pneumatic System Characteristics)

  • 김형의;김동수;강보식;성백주
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.91-98
    • /
    • 1995
  • Recently, improving the energy efficiency of a pneumatic system and reducing the consumption of compressed air were a concern of scholars at domestic and abroad. The using fields of a pneumatic system are widely used in factory automation of manufacturing line, chemical factories with explosiveness danger and petroleum industries etc. In particular, pneumatic cylinder is applied to feeding work of workpiece. jig tools and press mechanism, reciprocation and rotary motion with rack and pinion. In this study, the experimental apparatus consisted to pneumatic cylinder, dual supply pressure regulator and solenoid valve. The dual supply pressure regulator connected to outlet port of solenoid valve. The supply pressure($4.5kg_f/cm^2$) of compressed air goes into the rodless chamber 1 to drive the piston rod forward which is named working stage. The supply pressure ($2kg_f/cm^2$) of compressed air goes into the rod chamber 2 to drive the piston rod backward which is named no-working stage. Accordingly, the research results of this study can be obtained to Energy-Saving Effects of the compressed air about 35%.

  • PDF