• 제목/요약/키워드: Pneumatic Device

검색결과 132건 처리시간 0.023초

공기압 구동식 6 DOF 드라이빙 시뮬레이터의 개발 (Development of a Pneumatically Driven 6 DOF Driving Simulator)

  • 김근묵;강이석
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6090-6097
    • /
    • 2013
  • 본 연구의 목적은 실감나는 운전 환경을 제공하는 공기압 구동식 드라이빙 시뮬레이터 개발에 있다. 드라이빙 시뮬레이터의 모션 플랫폼은 운전자에게 실제 차량의 사실적인 느낌을 주는 메카트로닉스 장비이다. 모션 플랫폼의 비용은 드라이빙 시뮬레이터를 개발하는데 가장 큰 부분을 차지한다. 저비용으로 모션 플랫폼을 개발하기 위하여 6개의 공압 실린더로 구성된 스튜어트 플랫폼 형태를 기반으로 모션 플랫폼을 자체 제작하였다. 스튜어트 플랫폼은 조이스틱의 작동신호에 대한 응답으로 만족할 만한 추종성능을 보여주었다. 상용의 레이싱 게임 소프트웨어 중의 하나인 rFactor를 이용하여 드라이빙 시뮬레이터의 가능성을 확인하였다.

Analysis and Design of a Wave Energy Conversion Buoy

  • Oh, Jin-Seok;Bae, Soo-Young;Jung, Sung-Young
    • 한국항해항만학회지
    • /
    • 제32권9호
    • /
    • pp.705-709
    • /
    • 2008
  • In the sea various methods have been conducted to capture wave energy which include the use of pendulums, pneumatic devices, etc. Floating devices, such as a cavity resonance device take advantages of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular flotation body which contains a vertical water column that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter buoy. This paper is shown to have an optimum value for which maximum power is obtained at a given resonant wave period Also, the length of the internal water column corresponds to that of the water mass in the water column. If designed properly, wave energy converter can take advantage not only of the cavity resonance, but also qf the heaving motion of the buoy. Finally, simulation is performed with a LabVIEW program and the simulation results are applied to a wave energy simulator for modifying design data for a wave energy converter.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

The Modeling of the Differential Measurement of Air Pressure for Non-intrusive Sleep Monitoring Sensor System

  • Chee, Young-Joon;Park, Kwang-Suk
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권6호
    • /
    • pp.373-381
    • /
    • 2005
  • The respiratory and heart beat signals are the fundamental physiological signals for sleep monitoring in the home. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body which makes long term measurement difficult and troublesome. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The concept of the balancing tube between two air cells is suggested to increase the robustness against postural changes during the measurement period. With this balancing tube, the meaningful frequency range could be selected by the pneumatic filter method. The mathematical model for the air mattress and balancing tube was suggested and the validation experiments were performed for step and sinusoidal input. The results show that the balancing tube can eliminate the low frequency component between two cells effectively. This technique was applied to measure the respiration and heart beat on the bed, which shows the potential applications for sleep monitoring device in home. With the analysis of the waveform, respiration intervals and heart beat intervals were calculated and compared with the signal from conventional methods. The results show that the measurement from air mattress with balancing tube can be used for monitoring respiration and heart beat in various situations.

Analytic Hierarchical Procedure and Economic Analysis of Pneumatic Pavement Crack Preparation Devices

  • Park, JeeWoong;Cho, Yong K.;Wang, Chao
    • Journal of Construction Engineering and Project Management
    • /
    • 제5권2호
    • /
    • pp.44-52
    • /
    • 2015
  • Various approaches have been used in crack preparations and each of the approaches has advantages and disadvantages. Although the routing method has been widely used and seems to be the best approach among the approaches, it is not a complete solution for crack preparation. This paper compares and evaluates a pneumatic crack cleaning device (CCD) developed by Robotics and Intelligent Construction Automation group at Georgia Tech, over existing devices. Surveys were conducted to discover factors that affect the performance of crack/joint preparation work. Then, data for such information were collected via field tests for devices such as router, heat lancer, air blower and CCD. Performed field test results and follow-up interviews demonstrated that the utilization of CCD has potential to offer improvements in productivity, safety, and maintenance cost. An analytic hierarchical procedure (AHP) and economic analyses were conducted. The AHP analysis considered three factors including safety, quality and productivity while the economic analyses examined the alternatives in various ways. The results indicated that the CCD was ranked first and second for the AHP analysis and economic analysis, respectively. In conclusion, the field tests and results revealed that the utilization of CCD achieved satisfactorily in performance, quality, safety and control, and showed that it has high potential in crack cleaning practice.

공기부양판을 적용한 에어쿠션 트랜스포터의 개발 (Development of Air Cushion Transporter Using the Pneumatic Floating Pad)

  • 정현목;홍준희;윤동원;박희창;김병인;이성휘
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.338-344
    • /
    • 2016
  • Recent trends in transport system for carrying heavy freight are that demands of a high efficiency, economic efficiency, convenience and safety are increased. Conventional transport systems were poor in transport efficiency and economic efficiency. And Safety problems can be caused to products and workers. In order to overcome these problems, an air cushion transport device with a high-pressure air is required. The air cushion transporter is a device for reducing the frictional force of floor surface and lifting the heavy freight by spraying the high-pressure air to the floor. Technology to float and transfer freight using high-pressure air is very convenient and initial cost can be reduced. In this paper, the study on the levitation performance and transport efficiency of air cushion transport system is conducted and verified that air cushion transporter has a significantly higher transport efficiency than conventional heavy handling systems.

질 향상 활동을 통한 사지압박순환장치의 안전관리 (The Safety Management for Compression Medical Device through the Quality Improvement Activities)

  • 안영재;김규성;신정애;이혜련;황규정;박지영;김새롬;강수경;권대규
    • 재활복지공학회논문지
    • /
    • 제11권2호
    • /
    • pp.125-132
    • /
    • 2017
  • 환자의 혈전증 예방을 위하여 사지압박순환장치가 사용되어지고 있으나 잦은 고장으로 인한 불만이 많다. 이에 본 연구에서는 사지압박순환장치의 고장의 발생 원인을 파악하고 제품요인, 간호사요인, 환자요인 그리고 시스템요인에 대하여 다양한 개선 활동을 시행하였다. 그 결과로 각각의 요인에 대한 지표의 개선효과를 볼 수 있었으며, 기기의 불량률을 줄일 수 있었다. 보다 적극적인 의료기기의 개선 활동은 기기의 불량률을 줄이는데 기여할 수 있으며, 이를 통해 의료 서비스의 품질 개선 및 안전한 의료문화를 이루는데 도움이 될 수 있을 것으로 사료된다.

소아용 보조인공심장의 모의순환 실험에 관한 연구 (In Vitro Test of Seiong Pediatric Ventricular Assist Device)

  • 권혁남;박표원
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권1호
    • /
    • pp.29-34
    • /
    • 1991
  • Ventricular assist device(VAD) has been clinically applied as a temporary circulatory sup- porting system in the patients with severe heart failure, but small sized VAD for infant is not available. The purpose of tilis paper is to introdIAce small sized VAD and presents the result of in vitro test. Sejong VAD is diaphragmatic type of pneumatic pump and stroke volume is 11cc. Cardiac outputs of the Sejong VAD were measured by overflow tank under variable conditions of driving parameters. The cardiac output was 1.3 1/min at the heart rate of 120 per minute, left atrial pressure of $15cmH_2O$, percent systole of 43%, driving pressure of 240 mmHg, vacuum pressure of -40 mmHg, and mean aortic pressure of 70 mmHg. No mechanical problem was developed during the continuous in vitro test for 3 months.

  • PDF

이중펄스모타 파열판 형상 변화에 따른 파열 영향의 실험적 분석 (Experimental Analysis of Bursting Performance according to Rupture Disc Shape of Dual Pulse Motor)

  • 권태하;조원만;노태호;장홍빈;구송회
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.666-669
    • /
    • 2011
  • 이중펄스 로켓모타에 적용되는 격벽형 펄스분리장치의 파열판 형상을 변경하는 설계를 진행하였다. 펄스분리장치 설계 확정에 앞서 3가지 다른 형상의 파열판 평판시험을 진행하여 파열판 성능을 확인하였다. 평판시험후 시험결과를 분석하여 펄스분리장치 파열판의 8개의 원형 구멍형과 8개의 사다리꼴 구멍 형상을 적용하기로 결정하였다.

  • PDF

초음파 센싱 방식의 spirometer에 대한 sensitivity 향상 (Sensitivity Elevation about Spirometer Using Ultrasound Sensing Method)

  • 한승헌;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.269-272
    • /
    • 2004
  • 초음파 센서를 이용한 호흡측정방식은 관성 및 압력의 오차의 영향을 거의 받지 않고, 반영구적으로 사용이 가능한 호흡기기이다. 초음파의 특성을 이용한 것으로 송수신시 초음파의 매질인 공기의 흐름에 의한 반송형식인 초음파의 전달속도 차이를 이용하여 호흡량 및 흐름을 detecting하는 기술이다. 본 논문에서는 환자를 중심으로 측정이 이루어져야 하기 때문에 센서의 송수신시 일어나는 신호의 sensitivity를 향상시켜서 약한 호흡에도 dectection이 가능하도록 하였다.

  • PDF