• Title/Summary/Keyword: Pm

Search Result 33,075, Processing Time 0.055 seconds

Evaluation of the Neural Fiber Tractography Associated with Aging in the Normal Corpus Callosum Using the Diffusion Tensor Imaging (DTI) (확산텐서영상(Diffusion Tensor Imaging)을 이용한 정상 뇌량에서의 연령대별 신경섬유로의 변화)

  • Im, In-Chul;Goo, Eun-Hoe;Lee, Jae-Seung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.189-194
    • /
    • 2011
  • This study used magnetic resonance diffusion tensor imaging (DTI) to quantitatively analyze the neural fiber tractography according to the age of normal corpus callosum and to evaluate of usefulness. The research was intended for the applicants of 60 persons that was in a good state of health with not brain or other disease. The test parameters were TR: 6650 ms, TE: 66 ms, FA: $90^{\circ}$, NEX: 2, thickness: 2 mm, no gap, FOV: 220 mm, b-value: $800s/mm^2$, sense factor: 2, acquisition matrix size: $2{\times}2{\times}2mm^3$, and the test time was 3 minutes 46 seconds. The evaluation method was constructed the color-cored FA map include to the skull vertex from the skull base in scan range. We set up the five ROI of corpus callosum of genu, anterior-mid body, posterior-mid body, isthmus, and splenium, tracking, respectively, and to quantitatively measured the length of neural fiber. As a result, the length of neural fiber, for the corpus callosum of genu was 20's: $61.8{\pm}6.8$, 30's: $63.9{\pm}3.8$, 40's: $65.5{\pm}6.4$, 50's: $57.8{\pm}6.0$, 60's: $58.9{\pm}4.5$, more than 70's: $54.1{\pm}8.1mm$, for the anterior-mid body was 20's: $54.8{\pm}8.8$, 30's: $58.5{\pm}7.9$, 40's: $54.8{\pm}7.8$, 50's: $56.1{\pm}10.2$, 60's: $48.5{\pm}6.2$, more than 70's: $48.6{\pm}8.3mm$, for the posterior-mid body was 20's: $72.7{\pm}9.1$, 30's: $61.6{\pm}9.1$, 40's: $60.9{\pm}10.5$, 50's: $61.4{\pm}11.7$, 60's: $54.9{\pm}10.0$, more than 70's: $53.1{\pm}10.5mm$, for the isthmus was 20's: $71.5{\pm}17.4$, 30's: $74.1{\pm}14.9$, 40's: $73.6{\pm}14.2$, 50's: $66.3{\pm}12.9$, 60's: $56.5{\pm}11.2$, more than 70's: $56.8{\pm}11.3mm$, and for the splenium was 20's: $82.6{\pm}6.8$, 30's: $86.9{\pm}6.4$, 40's: $83.1{\pm}7.1$, 50's: $81.5{\pm}7.4$, 60's: $78.6{\pm}6.0$, more than 70's: $80.55{\pm}8.6mm$. The length of neural fiber for normal corpus callosum were statistically significant in the genu(P=0.001), posterior-mid body(P=0.009), and istumus(P=0.012) of corpus callosum. In order of age, the length of neural fiber increased from 30s to 40s, as one grows older tended to decrease. For this reason, the nerve cells of brain could be confirmed through the neural fiber tractography to progress actively in middle age.

Evaluation of Combine IGRT using ExacTrac and CBCT In SBRT (정위적체부방사선치료시 ExacTrac과 CBCT를 이용한 Combine IGRT의 유용성 평가)

  • Ahn, Min Woo;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Geon Ho;Lee, Doo Sang;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.201-208
    • /
    • 2018
  • Purpose : The purpose of this study is to compare and analyze the set-up errors using the Combine IGRT with ExacTrac and CBCT phased in the treatment of Stereotatic Body Radiotherapy. Methods and materials : Patient who were treated Stereotatic Body Radiotherapy in the ulsan university hospital from May 2014 to november 2017 were classified as treatment area three brain, nine spine, three pelvis. First using ExacTrac Set-up error calibrated direction of Lateral(Lat), Longitudinal(Lng), Vertical(Vrt), Roll, Pitch, Yaw, after applied ExacTrac moving data in addition to use CBCT and set-up error calibrated direction of Lat, Lng, Vrt, Rotation(Rtn). Results : When using ExacTrac, the error in the brain region is Lat $0.18{\pm}0.25cm$, Lng $0.23{\pm}0.04cm$, Vrt $0.30{\pm}0.36cm$, Roll $0.36{\pm}0.21^{\circ}$, Pitch $1.72{\pm}0.62^{\circ}$, Yaw $1.80{\pm}1.21^{\circ}$, spine Lat $0.21{\pm}0.24cm$, Lng $0.27{\pm}0.36cm$, Vrt $0.26{\pm}0.42cm$, Roll $1.01{\pm}1.17^{\circ}$, Pitch $0.66{\pm}0.45^{\circ}$, Yaw $0.71{\pm}0.58^{\circ}$, pelvis Lat $0.20{\pm}0.16cm$, Lng $0.24{\pm}0.29cm$, Vrt $0.28{\pm}0.29cm$, Roll $0.83{\pm}0.21^{\circ}$, Pitch $0.57{\pm}0.45^{\circ}$, Yaw $0.52{\pm}0.27^{\circ}$ When CBCT is performed after the couch movement, the error in brain region is Lat $0.06{\pm}0.05cm$, Lng $0.07{\pm}0.06cm$, Vrt $0.00{\pm}0.00cm$, Rtn $0.0{\pm}0.0^{\circ}$, spine Lat $0.06{\pm}0.04cm$, Lng $0.16{\pm}0.30cm$, Vrt $0.08{\pm}0.08cm$, Rtn $0.00{\pm}0.00^{\circ}$, pelvis Lat $0.06{\pm}0.07cm$, Lng $0.04{\pm}0.05cm$, Vrt $0.06{\pm}0.04cm$, Rtn $0.0{\pm}0.0^{\circ}$. Conclusion : Combine IGRT with ExacTrac in addition to CBCT during Stereotatic Body Radiotherapy showed that it was possible to reduce the set-up error of patients compared to single ExacTrac. However, the application of Combine IGRT increases patient set-up verification time and absorption dose in the body for image acquisition. Therefore, depending on the patient's situation that using Combine IGRT to reduce the patient's set-up error can increase the radiation treatment effectiveness.

  • PDF

Correlation among PM10, PM2.5, Cd, and Pb Concentrations in Ambient Air and Asian Dust Storm Event (황사 발생과 대기 중 PM10, PM2.5, Cd, Pb 농도의 상관성)

  • Moon, Chan-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.532-538
    • /
    • 2020
  • Objectives: The study evaluated correlations among monthly PM2.5, PM10, Cd, Pb concentrations and the number of Asian dust days. Methods: Based on data from 'The annual report on air quality in Korea from 1999 to 2017', concentrations of PM10, PM2.5, Cd, Pb, and the number of Asian dust days were recalculated to mean, standard deviation, minimum, and maximum. Correlation coefficients were calculated among PM2.5, PM10, Cd, Pb, and Asian dust days. Results: Asian dust days were correlated only with PM10 among the four factors of PM10, PM2.5, Cd, and Pb. The four factors of PM10, PM2.5, Cd, and Pb were very significantly correlated with each other (p<0.01). Their correlation coefficients for PM10 were 0.800 for PM2.5, 0.823 for Cd, and 0.892 for Pb. PM2.5 was also correlated strongly with Cd (0.845) and Pb (0.830). Cd had a correlation with Pb of 0.971. The maximums of PM2.5, PM10, and Pb were shown to exceed the atmospheric environmental standard of Korea, which necessitates national continuous exposure control. Based on exposure data, Asian dust days were thought to be an exposure factor for Cd and Pb. Conclusion: Asian dust might be a factor in Cd and Pb exposure. National exposure controls are required for exposure to PM2.5, PM10, Cd, and Pb.

Characteristics of Spacio-Temporal Variation for PM10 and PM2.5 Concentration in Busan (부산지역 PM10과 PM2.5농도의 시간 및 공간적 변화 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.1013-1023
    • /
    • 2010
  • The purpose of this study was to analyze the characteristics of spacio-temporal variation for $PM_{10}$ and $PM_{2.5}$ concentration in Busan. $PM_{10}$ concentration has been reduced for the past three year and exceeded $50\;{\mu}g/m^3$ of the national standard for $PM_{10}$. $PM_{2.5}$ concentration showed gradual decrease or stagnant trends and exceeded the U.S. EPA standard. Seasonal analysis of $PM_{10}$ and $PM_{2.5}$ suggested spring>winter>fall>summer(by Asian dust) and winter>spring>summerenlifall(by anthropogenic effect) in the order of high concentration, respectively. Characterization of diurnal variations suggests that $PM_{10}$ levels at all the three sites consistently exhibited a peak at 1000LST and $PM_{2.5}$ at Jangrimdong experienced the typical $PM_{2.5}$ diurnal trends such that a peak was observed in the morning and the lowest level at 1400LST. In the case of seasonal trends, the $PM_{2.5}/PM_{10}$ ratio was in the order of summer>winter>fall>spring at all the study sites, with a note that spring bears the lowest concentration. During AD events, $PM_{10}$ concentration exhibited the highest level at Jangrimdong and the lowest level at Joadong. And $PM_{2.5}/PM_{10}$ ratio in AD was 0.16~0.28.

속초연안 해양환경의 시공간적 변동특성

  • Park, Seung-Yun;Park, Jin-Il;Sim, Jeong-Min;Kim, Yeong-Suk;Jin, Hyeon-Guk;Hwang, Un-Gi;Kim, Gwi-Yeong;Jeong, Chang-Su
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.280-281
    • /
    • 2006
  • 속초연안의 수온은 18개년 평균 표층수 $14.10\pm0.34^{\circ}C$, 저층수 $12.56\pm0.28^{\circ}C$, 염분은 표층수 $31.66\pm0.18$, 저층수 $32.68\pm0.10$, pH은 표층수 $8.05\pm0.01$, 저층수 $8.02\pm0.01$, BO는 표층수 $8.48\pm0.11mg/L$, 저층수 $8.16\pm0.12mg/L$, COD는 표층수 $1.54\pm0.07mg/L$, 저층수 $1.33\pm0.06mg/L$, SS는 표층수 $13.75\pm0.80mg/L$, $PO_4$-P는 표층수 $0.74\pm0.05{\mu}M$, 저층수 $0.61\pm0.04{\mu}M$, $NH_4$-N는 표층수 $2.49\pm0.18{\mu}M$, 저층수 $2.01\pm0.15{\mu}M$, $NO_2$-N는 표층수 $0.72\pm0.05{\mu}M$, 저층수 $0.58\pm0.04{\mu}M$, $NO_3$-N는 표층수 $4.39\pm0.24{\mu}M$, 저층수 $3.63\pm0.20{\mu}M$, DIN는 표층수 $7.64\pm0.38{\mu}M$, 저층수 $6.22\pm0.29{\mu}M$, DIN/DIP비 표층수 $23.91\pm3.42$, 저층수 $23.43\pm3.38$이었으며, 전반적으로 해역별 수질기준 I등급 내지는 II등급을 유지하고 있었고, 공간적으로는 외해측으로 갈수록 외해수와 혼합 확산되어 양호한 수질을 나타내었다. 장기적인 변동특성은 세그룹으로 구분되어진다.

  • PDF

Estimation of the Probability of Exceeding PM2.5 Standards in Busan (부산지역에서의 PM2.5 기준치 미달성확률 추정)

  • Chang, Jae-Soo;Cheong, Jang Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.697-705
    • /
    • 2012
  • Particulate matter (PM) data collected from the Urban Air Monitoring Network in Busan during the period from 2006 through 2010 were statistically examined and analyzed to estimate the probability of exceeding $PM_{2.5}$ 24 hour and annual standard to be implemented from January $1^{st}$, 2015. For Jangrimdong, Yeonsandong, Kijangeup, and Jwadong where simultaneous measurement of $PM_{10}$ and $PM_{2.5}$ was conducted, the probability of exceeding $PM_{2.5}$ standards was estimated using $PM_{2.5}$ data measured on site. For other areas where there were no measured $PM_{2.5}$ data available, the probability of exceeding $PM_{2.5}$ standards was statistically estimated using $PM_{10}$ measured on site and $PM_{2.5}/PM_{10}$ ratios obtained from the four stations where both $PM_{2.5}$ and $PM_{10}$ were monitored simultaneously. At Jangrimdong, Yeonsandong, Kijangeup, and Jwadong, mean value of annual 99 percentile of 24 hr average $PM_{2.5}$ for 5 years from 2006 through 2010 was 99.3, 74.5. 57.0, and $62.5{\mu}g/m^3$, respectively, and the probability of exceeding $PM_{2.5}$ 24 hr standard was estimated at 100%. For areas where there were no measured $PM_{2.5}$ data available, the estimated probability of exceeding $PM_{2.5}$ 24 hr standard was more than 0.82. Mean value of annual average $PM_{2.5}$ from 2008 through 2010 was 31.7 and $27.6{\mu}g/m^3$ for Jangrimdong and Yeonsandong, respectively, which exceeded $PM_{2.5}$ annual standard of $25{\mu}g/m^3$. Mean value of annual average $PM_{2.5}$ during the same period for Kijangeup and Jwadong was 19.2 and $20.7{\mu}g/m^3$, respectively, which satisfied $PM_{2.5}$ annual standard. For other areas where there were no measured $PM_{2.5}$ data available, the probability of exceeding $PM_{2.5}$ annual standard was more than 0.95 except Taejongdae and Kwangahndong. With $PM_{10}$ and $PM_{2.5}$ data measured at 17 Urban Air Monitoring Stations in Busan, the probability of exceeding $PM_{2.5}$ standards was estimated to be very high for almost all areas. This result indicates that proper measures to mitigate $PM_{2.5}$ in Busan should be investigated and established as soon as possible.

Chemical Properties of the Metallic Elements and the Mass Concentration of PM10 and PM2.5 Observed in Busan, Korea in Springtime of 2006-2008 (2006-2008년 봄철 부산 지역 PM10과 PM2.5의 질량농도 및 금속성분의 화학적 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.234-245
    • /
    • 2010
  • Twenty-four hour integrated $PM_{10}$ and $PM_{2.5}$ samples were measured during springtime (March, April, and May) in Busan for three years from 2006 to 2008, and mass concentrations and metallic elements of measurement were analyzed to investigate temporal, spatial, chemical characteristics of the mass concentration and metallic elements in association with meteorological conditions including Asian Dust (AD) vs. non Asian Dust (NAD) seasons, and other air mass transport patterns. The result showed that $PM_{10}$, $PM_{2.5}$ and $PM_{10-2.5}$ concentrations were on average of $126.2{\pm}89.8$, $85.5{\pm}41.6$, and $40.7{\pm}54.9{\mu}g/m^3$, respectively, and the $PM_{2.5}/PM_{10}$ and $PM_{10-2.5}/PM_{2.5}$ ratios were 0.70 and 0.48, respectively. The highest concentrations of PM were observed when air parcels were originated from both northwest sector covering Beijing and west sector including Shanghai areas.

The Changes of Brain Injury Markers(S100-$\beta$, Neuron-Specific enolase) After Retrograde Cerebral Perfusion Under Total Circulatory Arrest in Pigs (돼지에서 역행성 뇌관류 시행 후 혈청 및 소변의 뇌손상 관련지표(S100-$\beta$, Neuron-specific enolase)의 변화)

  • 김상윤;김만호;김경환
    • Journal of Chest Surgery
    • /
    • v.35 no.12
    • /
    • pp.847-853
    • /
    • 2002
  • We previously published the data that proved the safety of retrograde cerebral perfusion for 120 minutes. At this time, we planned to check the neuron-specific enolase and S100-$\beta$ in serum and urine to assess the possibility of early detection of cerebral injury. Material and Method: We used pigs(Landrace species) weighing 35 kg and performed RCP for 120 minutes. After the weaning of cardiopulmonary bypass, we observed the pigs for another 120 minutes. Systemic arterial pressure, central venous pressure, and serum and urine levels of neuron-specific enolose (NSE) and S100$\beta$ protein were checked. Central venous pressure during RCP was maintained in the range of 20 to 25 mmHg. Result: Serum levels of NSE(ng/$m\ell$) were 0.67$\pm$0.18(induction of anesthesia), 0.53$\pm$0.47(soon after CPB), 0.44$\pm$0.27(20min alter CPB), 0.24$\pm$0.09(RCP 20min), 0.37$\pm$0.35(RCP 40min), 0.33$\pm$0.21 (RCP 60min), 0.37$\pm$0.22(RCP 80min), 0.41$\pm$0.23(RCP 100 min), 0.48$\pm$0.26(RCP 120min), 0.42$\pm$0.29(30min after rewarming), 0.35 $\pm$0.32(60min after rewarming, 0.42$\pm$0.37(CPBoff 30min), 0.47$\pm$0.34(CPBOff 60min), 0.47$\pm$0.28(CPBOff 90min), and 0.57$\pm$0.29(CPBOff 120min). There was no statistically significant difference in levels between before and after RCP(ANOVA, p>0.05). Urine levels of NSE also showed no statistically significant difference in levels between before and after RCP. There was no correlation between urine and serum levels of NSE(Pearson correlation, p>0.05). Serum levels of S100$\beta$ protein(ng/$m\ell$) during the same time frames were 0.14$\pm$0.08, 0.15$\pm$0.07, 0.22$\pm$0.15, 0.23$\pm$0.07, 0.28$\pm$0.10, 0.40$\pm$0.05, 0.47$\pm$0.03, 0.49$\pm$0.12, 0.43$\pm$0.11, 0.46$\pm$0.15, 0.62$\pm$0.17, 0.77$\pm$0.21, 0.78$\pm$0.23, 0.77$\pm$0.23, and 0.82$\pm$0.33. There was statistically significant difference in levels between before and after RCP(ANOVA, p<0.05). Urine levels of NSE also showed statistically significant difference in levels between before and after RCP(ANOVA, p<0.05). There was significant correlation between urine and serum levels of NSE(Pearson correlation, p<0.05). Conclusion: The author observed the increase in serum and urine levels of S100$\beta$ after 120 minutes of RCP. Significant correlation between serum and urine levels was observed. The results were considered to be the fundamental data that could correlate this study with human-based study.

Distribution Characteristics of the Concentration of Ambient PM-10 and PM-2.5 in Daegu Area (대구지역 대기 중 PM-10과 PM-2.5의 농도분포 특성)

  • Do, Hwa-Seok;Choi, Su-Jin;Park, Min-Sook;Lim, Jong-Ki;Kwon, Jong-Dae;Kim, Eun-Kyung;Song, Hee-Bong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • The three air quality monitoring sites, analysed simultaneously PM-10 and PM-2.5, ie. Ihyeondong in industrial area, Manchondong in residential area, Pyeongnidong in streetside, among 13 air quality monitoring sites in Daegu area, were investigated the concentration distribution characteristics of PM-2.5 and PM-10 in the last 2 years (2011~2012). PM-10 concentrations exceeded annual average reference value ($50{\mu}g/m^3$) in Ihyeondong ($52.5{\mu}g/m^3$) and Pyeongnidong ($60.9{\mu}g/m^3$) but satisfied in Manchondong ($44.9{\mu}g/m^3$). All PM-2.5 concentrations exceeded EPA annual standard value of the United States ($15{\mu}g/m^3$) in three points, but also exceeded new control annual standard value ($25{\mu}g/m^3$) coming into effect in 2015. Seasonal concentration of PM-10 appeared the order of spring > winter > fall > summer, and in the case of PM-2.5, the order was winter > spring > fall > summer. Monthly concentrations of PM-10 and PM-2.5 were highest in February and lowest in September. Diurnal concentrations of PM-10 and PM-2.5 increased from 7:00 AM, and recorded the highest concentration between 10:00 AM and 11:00 AM. And after 6:00 PM it lowered continuously and tended to show fixed concentrations from evening until early morning. In addition, the concentration of fine particles during the week was higher than the weekend. The fluctuation in industrial area was larger than the residential area. At the PM-2.5/PM-10 ratio, summer was generally high, spring was the lowest. And, when yellow sand occurred, it was 0.32 to 0.42. It was very low compared to 0.54 to 0.64 during non-yellow sand times. This paper for the state and the characteristics of Daegu' fine particles (PM-10, PM-2.5) will be valuable to future researches of fine particles and air pollution management.

Breeding and Development of the Tscherskia triton in Jeju Island (제주도 서식 비단털쥐(Tscherskia triton)의 번식과 발달)

  • Park, Jun-Ho;Oh, Hong-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.2
    • /
    • pp.152-165
    • /
    • 2017
  • The greater long-tail hamster, Tscherskia triton, is widely distributed in Northern China, Korea and adjacent areas of Russia. Except for its distribution, biological characteristics related to life history, behavior, and ecological influences for this species are rarely studied in Korea. This study was conducted to obtain biological information on breeding, growth and development that are basic to species-specific studies. The study adopted laboratory management of a breeding programme for T. triton collected in Jeju Island from March, 2015 to December, 2016. According to the study results, the conception rate was 31.67% and the mice in the large cages had a higher rate of conception than those in the small cages (56.7 vs. 6.7%). The gestation period was $22{\pm}1.6days$ (ranges from 21 to27 days), and litter size ranged from 2 to 7, with a mean of $4.26{\pm}1.37$ in the species. The minimum age for weaning was between $19.2{\pm}1.4days$ (range of 18-21 days). There were no significant differences by sex between mean body weight and external body measurements at birth. However, a significant sexual difference was found from the period of weaning (21 days old) in head and body length, as well as tail length (HBL-weaning, $106.50{\pm}6.02$ vs. $113.34{\pm}4.72mm$, p<0.05; HBL-4 months, $163.93{\pm}5.42$ vs. $182.83{\pm}4.32mm$, p<0.05; TL-4 months, $107.23{\pm}3.25$ vs. $93.95{\pm}2.15mm$, p<0.05). Gompertz and Logistic growth curves were fitted to data for body weight and lengths of head and body, tail, ear, and hind foot. In two types of growth curves, males exhibited greater asymptotic values ($164.840{\pm}7.453$ vs. $182.830{\pm}4.319mm$, p<0.0001; $163.936{\pm}5.415$ vs. $182.840{\pm}4.333mm$, p<0.0001), faster maximum growth rates ($1.351{\pm}0.065$ vs. $1.435{\pm}0.085$, p<0.05; $2.870{\pm}0.253$ vs. $3.211{\pm}0.635$, p<0.05), and a later age of maximum growth than females in head and body length ($5.121{\pm}0.318$ vs. $5.520{\pm}0.333$, p<0.05; $6.884{\pm}0.336$ vs. $7.503{\pm}0.453$, p<0.05). However, females exhibited greater asymptotic values ($105.695{\pm}5.938$ vs. $94.150{\pm}2.507mm$, p<0.001; $111.609{\pm}14.881$ vs. $93.960{\pm}2.150mm$, p<0.05) and longer length of inflection ($60.306{\pm}1.992$ vs. $67.859{\pm}1.330mm$, p<0.0001; $55.714{\pm}7.458$ vs. $46.975{\pm}1.074mm$, p<0.05) than males in tail length. These growth rate constants, viz. the morphological characters and weights of the males and females, were similar to each other in two types of growth curves. These results will be used as necessary data to study species specificity of T. triton with biological foundations.