• Title/Summary/Keyword: Ply waviness

Search Result 4, Processing Time 0.018 seconds

Evaluation of Laminate Property using Caulplate Application (카울플레이트 적용을 통한 라미네이트 특성 평가)

  • Park, Dong-Cheol;Kim, Yun-Hae
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.231-235
    • /
    • 2016
  • In this study, integrated co-bonded panels with the same configuration of hat stiffeners were fabricated and measured for ply waviness phenomenon. Total specimens consisted of 2 types; 1) the general co-bonded panel and 2) the co-bonded panel with caul plate made of carbon epoxy composite materials. The first general co-bonded panel specimen exhibited that laminate thickness on the stiffener location area was much thicker than the non-stiffener area and, there was ply waviness with 0.61 mm height and 3.29 mm length. In the second co-bonded panel specimen, the reduced waviness with 0.22 mm height and 1.37 length resulted in more than 50% improvements, which is due to the uniform pressure distribution of co-bonded interface by caul plate.

Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Abo Sabah, S.H.;Yahya, M.Y.
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.241-253
    • /
    • 2018
  • Mode II fracture toughness, $K_{IIC}$, of single-ply triaxially woven fabric (TWF) composite due to tow waviness and anisotropy effects were numerically and experimentally studied. The numerical wavy beam network model with anisotropic material description denoted as TWF anisotropic was first validated with experimental Mode II fracture toughness test employing the modified compact tensile shear specimen configuration. 2D planar Kagome and TWF isotropic models were additionally constructed for various relative densities, crack lengths, and cell size parameters for examining effects due to tow waviness and anisotropy. $K_{IIC}$ generally increased with relative density, the inverse of cell size, and crack length. It was found that both the waviness and anisotropy of tow inflict a drop in $K_{IIC}$ of TWF. These effects were more adverse due to the waviness of tow compared to anisotropy.

Thickness Effect on the Compressive Strength of T800/924C Carbon Fibre-Epoxy Laminates (T800/924C 탄소-에폭시 복합재판의 압축강도에 대한 두께 효과)

  • Lee, J.;C. Kong;C. Soutis
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.7-17
    • /
    • 2004
  • In this study, the effect of laminate thickness on the compressive behaviour of composite materials is investigated through systematic experimental work using the stacking sequences, $[O_4]_{ns},{\;}[45/0/-45/90]_{ns}$ and $[45_n/0_n/-45_n/90_n]_s$ (n=2 to 8). Parameters such as fibre volume fraction, void content, fibre waviness and interlaminar stresses, influencing compressive strength with increasing laminate thickness are also studied experimentally and theoretically. Furthermore the stacking sequence effects on failure strength of multidirectional laminates are examined. For this purpose, two different scaling techniques are used; (1) ply-level technique $[45_n/0_n/-45_n/90_n]s$ and (2) sublaminate level technique $[45/0/-45/90]_{ns}$. An apparent thickness effect existes in the lay-up with blocked plies, i.e. unidirectional specimens ($[O_4]_{ns}) and ply-level scaled multidirectional specimens ($[45_n/0_n/-45_n/90_n]_s$). Fibre waviness and void content are found to be main parameters contributing to the thickness effect on the compressive failure strength. However, the compressive strength of the sublaminate level scaled specimens ($[45/0/-45/90]_{ns}$) is almost unaffected regardless of the specimen thickness (since ply thickness remains constant). From the investigation of the stacking sequence effect, the strength values obtained from the sublaminate level scaled specimens are slightly higher than those obtained from the ply level scaled specimens. The reason for this effect is explained by the fibre waviness, void content, free edge effect and stress redistribution in blocked $0^{\circ}$ plies and unblocked $0^{\circ}$ plies. The measured failure strengths are compared with the predicted values.

One-Sided Nondestructive Evaluation of CFRP Composites By Using Ultrasonic Sound (초음파를 이용한 CFRP 복합재의 일방향 비파괴 평가)

  • Im, Kwang-Hee;Zhang, Gui-Lin;Choi, Sung-Rok;Ye, Chang-Hee;Ryu, Je-Sung;Lim, Soo-Hwan;Han, Min-Gui;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • It is well known that stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences their properties. Ultrasonic NDE of composite laminates is often based on the backwall echoes of the sample. A pair of such transducers was mounted in a holder in a nose-to-nose fashion to be used as a scanning probe on composites. Miniature potted angle beam transducers were used (Rayleigh waves in steel) on solid laminates of composites. Experiments were performed to understand the behavior of the transducers and the nature of the waves generated in the composite (mode, wave speed, angle of refraction). C-scan images of flaws and impact damage were then produced by combining the pitch-catch probe with a portable manual scanner known as the Generic Scanner ("GenScan"). The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to fiber orientation of the CFRP composites, including low level porosity, ply waviness, and cracks. Therefore, it is found that the experimentally Rayleigh wave variation of pitch-catch ultrasonic signal was consistent with numerical results and one-side ultrasonic measurement might be very useful to detect the defects.