• Title/Summary/Keyword: Plume height

Search Result 50, Processing Time 0.029 seconds

Study on the Ejected Plume from Opening Regarding Side-wall Effect in Fire (측벽효과를 고려한 개구부 분출화염 거동 연구)

  • Jeong, Jae-Gun;Shin, Yi-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.219-220
    • /
    • 2016
  • The behavior of fire plumes has not yet been clearly identified for cases where sidewalls are installed near an opening in an unconfined space. In this research, we aim to quantitatively identify the effects on fire spread when sidewalls are located on both sides of an opening. Specifically, we focus on the effects on the fire plume of the relation between the location of sidewalls and the opening, and carry out a scale-model experiment to devise a flame height model and to evaluate the temperature distribution along the central axis of the flame.

  • PDF

Evidence for Hydrothermal Plume in Manus Basin, SW Pacific: Distribution of Transparency and Hydrogen Sulfide (남서태평양 마누스분지 해역의 열수 plume 증거: 투명도 및 황화수소 분포)

  • Lee, Kyeong-Yong;Park, Yong-Chul;Son, Seung-Kyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.363-373
    • /
    • 2000
  • To understand and investigate chemical characteristics of thermal environment in the southwestern Paciflc, we have measured hydrological and chemical parameters such as temperature, salinity, transparency, pH, nutrients and hydrogen sulfide (H$_2$S). Samples were collected with CTD-casting at 12 station, in Manus Basin including PACMANUS, DESMOS and Susu Knolls, Hydrothermal systems consist of circulation zones where seawater interacts with rock, thereby changing chemical and physical characteristics of both the seawater and the rock. The altered seawater, called hydrothermal fluid, is injected back into the ocean from the hydrothermal vent fields and forms hydrothermal plumes. Consequently, we detected hydrothermal plume with transparency and sulfide anomalies at PACMANUS and Susu Knolls. Sulfide, as geochemical tracer of hydrothermal plume, ranged 0-3.31 ${\mu}$M, and averaged 0.63 ${\mu}$M in the study area. The height, flux and activity of the plume are affected by circulations in the deep water and the spread of plume follows along the isopycnal surface. Therefore the observed H$_2$S anomaly can provide important clue for the source location and it appears that the targestsource in the PACMANUS is aligned in the north-south direction.

  • PDF

A Study on the Diffusion of Gaseous Radioactive Effluents Based on the Statistical Method (통계적 방법을 이용한 방사성 물질의 대기 확산 평가)

  • Na, Man-Gyun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.251-257
    • /
    • 1998
  • A diffusion model of radioactive gaseous effluents is improved to apply for domestic nuclear power plants. Up to now, XOQDOQ computer code package developed by U. S NRC has been used for the assessment of radioactive plume dispersion by normal operation of domestic nuclear power plants. XOQDOQ adopts the straight-line Gaussian plume model which was basically derived for the plane terrain. However, since there are so many mountains in Korea, the several shortcomings of XOQDOQ are improved to consider the complex terrain effects. In this work, wind direction change is considered by modifying the wind rose frequency using meteorological data of the local weather stations. In addition, an effective height correction model, a plume reduction model due to plume penetration into mountain, and a wet deposition model are adopted for more realistic assessments. The proposed methodology is implemented in Yongkwang nuclear power plants, and can be used for other domestic nuclear power plants.

  • PDF

A computational study on the removal of the non-isothermal concentrated fume from the semi-enclosed space

  • Chang, Hyuksang;Seo, Moonhyeok;Lee, Chanhyun
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.216-223
    • /
    • 2017
  • For the prediction of the ventilation rate for removing the non-isothermal concentrated fume from the semi-enclosed space, the computational fluid dynamics (CFD) analysis was done. Securing the proper ventilation conditions in emergency state such as in fire is crucial factor for the protection of the resident in the space. In the analysis for the determining the proper ventilation rate, the experimental study had the limitation for simulating the versatile conditions of fume development. The theoretical and computational method had been chosen as the alternate tool for the experimental analysis. In this study, the CFD analysis was done on the defined model which already had been done the experimental analysis by the previous workers. By comparing the prediction on the plume heights and the ventilation rates by the CFD analysis at, and in the parametric model of $1m^3$ with those of the previous experimental works, the feasibility of the computational analysis was evaluated. For the required ventilation rate analyzed by the CFD analysis was over predicted in 7.1% difference with that of the experimental results depending on the different plume height. With the comparison with the analytical Zukoski model at, the CFD analysis on the ventilation was under predicted in 8.3%. By the verification of the feasibility of the CFD analysis, the extended analysis was done for getting the extra information such as the water vapor distribution and $CO^2$ distribution in the semi-enclosed spaces.

A Study on Smoke Movement in Room Fires with Various Pool Fire Location

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1485-1496
    • /
    • 2002
  • In order to investigate the fire-induced smoke movement in a three-dimensional room with an open door, numerical and experimental study was performed. The center, wall, and corner fire plumes for various sized fires were studied experimentally in a rectangular pool fire using methanol as a fuel. The numerical results from a self-developed SMEP (Smoke Movement Estimating Program) field model were compared with experimental results obtained in this and from literature. Comparisons of SMEP and experimental results have shown reasonable agreement. As the fire strength became larger for the center fires, the air mass flow rate in the door, average hot layer temperature, flame angle and mean flame height were observed to increase but the doorway-neutral-planeheight and the steady-state time were observed to decrease. Also as the wall effect became larger in room fires, the hot layer temperature, mean flame height, doorway-neutral-planeheight and steady-state time were observed to increase. In the egress point of view considering the smoke filling time and the early spread of plume in the room space, the results of the center fire appeared to be more dangerous as compared with the wall and the corner fire. Thus it is necessary to consider the wall effect as an important factor in designing efficient fire protection systems.

A Study on Sensitivity Analysis for Numerical Solution of Passenger Train Fire (여객 열차 화재의 수치해석을 위한 민감도 분석)

  • Kim, Woo-Seok;Roh, Sam-Kew;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The aim of this study is to analyse the sensitivity of fire simulation parameters including grid size and solid angle number which affect the performance of subway cabin fire simulation by FDS 4.07 version. The results of sensitivity analysis shows average of $10{\sim}20%$ differences in plume temperature, upper layer temperature, and layer height depending on the change of grid size. The study also shows that simulation with 0.05m grid size produces better resolution than that with coarse one which is 0.1m.

A Study of Smoke Movement in Tunnel Fires (터널내에서 화재 발생시 연기 거동에 대한 연구)

  • 김상훈;김성찬;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2000
  • In this study, reduced-scale experiments as the alternative to a real-scale fire test were conducted to understand fire properties in tunnel, and their results were compared with those of numerical simulation. The 1/20 scale experiments were conducted under the Froude scaling since smoke movement in tunnel is governed by buoyancy farce. A numerical simulations were on performed 3D unstructured meshes with PISO algorithm and buoyant plume models. Results showed that data was in reasonable agreement with the numerical data of smoke velocity, temperature distribution, and clear height.

  • PDF

Air Quality Impact Analysis of Point and Area Sources (점오염원과 면오염원의 대기환경영향 분석)

  • 김영성;손재익
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.168-173
    • /
    • 1993
  • Air quality impacts of point and area sources were analyzed by using ISCST2 with wind speed and stability class combinations of SCREEN. Stack height was important in determining the impact of point sources. With the stack height reduced to 21m from 75m, the concentration in the vicinity increased several times in spite of decreasing the emission rate by half. When the emission rates were same, concentrations from an area source of 10m release height were slightly lower than those from a point source of 21m stack height at the plume centerline. Bur the area source resulted in larger area of high concentration. Concentration from the point source was high in neutral to slightly unstable conditions with strong winds in a short distance, and in stable conditions with weak winds in a long distance. Concentration from the area source decreased with distance from the source, and was high in stable conditions with weak winds.

  • PDF

Comparative study of experimental equations on measurement of fire hight on pool fire (Pool fire에서의 화염의 높이 계산에 관한 실험식의 비교연구)

  • Hwang, Woon-Gi;Kwon, Chang-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.9-13
    • /
    • 2017
  • In this study, the height of the flame required to estimate the heat flow path and flame spread in pool fire has been applied by the empirical formula, but it is calculated without applying the pressure and temperature parameters of the fire room. Until now, the height of the flame applied to pool fire was $l_F=0.235Q^{2/5}-1.02D$ in the Heskestad empirical formula, but accurate temperature calculation was not possible due to the temperature and pressure which are not influenced by the flame height. Therefore, applying the temperature and pressure around it can calculate the exact flame height, which can be applied to fire investigation and fire dynamics. The structure of the flame is divided into a continuous flame, an intermittent flame, and a buoyancy flame, but it is assumed that the flame height is calculated from the visual aspect to the intermittent flame region, and the temperature of the buoyancy flame is very low. The effect of heat of vaporization on the height of flame was investigated. The results showed that flame height was different according to the pressure and temperature around the fire room.

Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable (입력변수의 조건에 따른 대기확산모델의 민감도 분석)

  • Chung Jin-Do;Kim Jang-Woo;Kim Jung-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.