• Title/Summary/Keyword: Plume Simulator

Search Result 16, Processing Time 0.023 seconds

A Study on the model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Ji, Young-Moo;Park, Jung-Sang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.358-361
    • /
    • 2008
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For numerical analysis, the Boussinesq fluid approximation and line fire model, which is assumed by the shape of forest fire spreading, are adopted. Comparing 3-D full numerical solutions with 2-D similarity solution, it has been built a new model that is capable of temperature prediction along the symmetric vertical axis in both cases of laminar and turbulent flows.

  • PDF

Effects of Underexpanded Plume in Transonic Region on Longitudinal Stability (천음속 영역에서 과소 팽창 화염이 종안정성에 미치는 영향에 관한 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.118-128
    • /
    • 2004
  • Exhaust plume effects on longitudinal aerodynamics of missile were investigated by wind tunnel tests using a solid plume simulator and CFD analyses with both the solid plume and air jet plumes. Approximate plume boundary prediction technique was used to produce the outer shape of the solid plumer and chamber conditions and nozzle shapes of the air jet plumes were determined through plume modeling technique to compensate the difference in thermodynamic properties between air and real plume. From comparisons among turbulence models in case of external flow interaction with the air jet plume, Spalart-Allmaras model turned out to give accurate result and to be less grid-dependent. Effects induced by the plume were evaluated through the computations with Spalart-Allmaras turbulence model and the air jet plume to account for various ratios of chamber and ambient pressure and Reynolds number under the flight test condition.

A Study on the Model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Park, Jun-Sang;Ji, Young-Moo;Jun, Hyang-Sig;Jeon, Dae-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For the numerical analysis, a line fire model with Boussinesq fluid approximation, which is idealized by the spreading shape of forest fire on the ground, is adopted. Comparing full 2-D and 3-D numerical solutions with 2-D similarity solution, it has been built a new model that is useful for temperature prediction along the symmetric vertical axis of fire model for both cases of laminar and turbulent flow.

Hydro-thermal Numerical Simulation for an Artificial Recharge Test in a Fractured Rock Aquifer (암반대수층 지하수 인공함양 시험에 대한 열-수리 모델링)

  • Park, Daehee;Koo, Min-Ho;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • An artificial recharge test aimed at investigating transport characteristics of the injected water plume in a fractured rock aquifer was conducted. The test used an injection well for injecting tap water whose temperature and electrical conductivity were different from the groundwater. Temporal and depth-wise variation of temperature and electrical conductivity was monitored in both the injection well and a nearby observation well. A highly permeable fracture zone acting as the major pathway of groundwater flow was distinctively revealed in the monitoring data. A finite element subsurface flow and transport simulator (FEFLOW) was used to investigate sensitivity of the transport process to associated aquifer parameters. Simulated results showed that aperture thickness of the fracture and the hydraulic gradient of groundwater highly affected spatio-temporal variation of temperature and electrical conductivity of the injected water plume. The study suggests that artificial recharge of colder water in a fractured rock aquifer could create a thermal plume persistent over a long period of time depending on hydro-thermal properties of the aquifer as well as the amount of injected water.

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.

Development of an RF Signal Level Prediction Simulator for Radiowave Propagation in Natural Environments (비행체의 원격신호측정을 위한 전파환경을 고려한 RF 수신신호 예측 시뮬레이터 개발)

  • Hyun, Jong-Chul;Kim, Sang-Keun;Oh, Yi-Sok;Seo, Dong-Soo;Kim, Heung-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.725-733
    • /
    • 2010
  • A simulator is proposed in this paper for predicting the RF signal level after propagating over sea and land surfaces. Various sea and land types and transmit/receive antenna patterns, as well as the locus of the transmit antenna, are considered for this simulator. At first, microwave reflection characteristics of various sea surfaces have been computed, based on an empirical formula which is developed in this study for the relation between the sea surface roughness and wind speed. Then, microwave reflections from land surfaces such as forests, agricultural areas, and bare surfaces, are computed using the first-order vector radiative transfer theory. Finally, the signal paths over sea and land surfaces are found using the ray tracing technique and the digital elevation model, and the signal level received by a receiving antenna is computed by the using the reflection coefficients of sea and land surfaces and the signal paths.

A Study on Sensitivity Analysis for Numerical Solution of Passenger Train Fire (여객 열차 화재의 수치해석을 위한 민감도 분석)

  • Kim, Woo-Seok;Roh, Sam-Kew;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The aim of this study is to analyse the sensitivity of fire simulation parameters including grid size and solid angle number which affect the performance of subway cabin fire simulation by FDS 4.07 version. The results of sensitivity analysis shows average of $10{\sim}20%$ differences in plume temperature, upper layer temperature, and layer height depending on the change of grid size. The study also shows that simulation with 0.05m grid size produces better resolution than that with coarse one which is 0.1m.

Inplementation of a Hydrogen Leakage Simulator with HyRAM+ (HyRAM+를 이용한 수소 누출 시뮬레이터 구현)

  • Sung-Ho Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.551-557
    • /
    • 2024
  • Hydrogen is a renewable energy source with various characteristics such as clean, carbon-free and high-energy, and is internationally recognized as a "future energy". With the rapid development of the hydrogen energy industry, more hydrogen infrastructure is needed to meet the demand for hydrogen. However, hydrogen infrastructure accidents have been occurring frequently, hindering the development of the hydrogen industry. HyRAM+, developed by Sandia National Laboratories, is a software toolkit that integrates data and methods related to hydrogen safety assessments for various storage applications, including hydrogen refueling stations. HyRAM+'s physics mode simulates hydrogen leak results depending on the hydrogen refueling station components, graphing gas plume dispersion, jet frame temperature and trajectory, and radiative heat flux. In this paper, hydrogen leakage data was extracted from a hydrogen refueling station in Samcheok, Gangwon-do, using HyRAM+ software. A hydrogen leakage simulator was developed using data extracted from HyRAM+. It was implemented as a dashboard that shows the data generated by the simulator using a database and Grafana.

Steady and Unsteady Operating Characteristics of Supersonic Exhaust Diffuser for Altitude Simulation (고도모사용 초음속디퓨져의 정상 및 천이작동특성)

  • Park, Byung-Hoon;Ki, Wan-Do;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.344-352
    • /
    • 2006
  • Evacuation performance, starting transient, and plume blowback at diffuser breakdown of a straight cylindrical supersonic exhaust diffuser with no externally supplied secondary flow are investigated. Pressure records in the transitional periods are measured by a small-scale cold-gas simulator. Flow-fields evolving in the diffuser-type ejector are solved by preconditioned Favre-averaged Navier-Stokes equations with a low-Reynolds number $k-{\varepsilon}$ turbulence model edited for turbulence compressibility effects. The present RANS method is properly validated with measured static wall pressure distributions and evacuation level at steady operation as well as the pressure records during the transition regime.

  • PDF

Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles (이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션)

  • Bae, K.Y.;Chung, H.T.;Kim, H.B.;Jung, I.S.;Kim, C.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF