• Title/Summary/Keyword: Plume Impingement

Search Result 15, Processing Time 0.023 seconds

Dynamic Effects Analysis on a Solar Array Due to Attitude Control Thruster Plume (자세제어 추력기 배기가스에 의한 태양전지판의 동적 영향 분석)

  • Chae, Jongwon;Han, Cho Young;Jun, Hyoung Yoll
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.799-804
    • /
    • 2015
  • The purpose of this study is to analyse the dynamic disturbances(disturbed forces and disturbed torques) due to attitude control thruster's plume impingement on the solar arrays. To produce database of the dynamic disturbances a sweep analysis was done, in which the two parameters are used; the distance between the thruster and solar arrays and the thruster tilt angle. Based on the database, a third order polynomial approximation is computed to represent the characteristics of the disturbed forces and torques. The final results are the coefficients of the approximation for each solar array angle position. These results as input data are used to optimize the configuration of the attitude control thrusters. This analysis is appled to the two candidate solar arrays for Geo-Kompsat-2 satellite and the results of the disturbed forces and disturbed torques are compared and analysed.

Installed Spacing and Reponse Time Index of Heat Detection Devices (열감지장치의 응답시간지수와 경계구역)

  • 권오승;이복영;김동석
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.72-75
    • /
    • 1996
  • The objectives of this paper investigate the effect of installed spacing on the activation of spot type heat detection devices. The flow of hot gases under a ceiling resulting from the impingement of a fire plume activates heat detectors and sprinklers. Local temperature and velocity in this ceiling jet are usually expressed with the function of a ceiling height, the distance from a fire location and the heat release rate of fire. And detectors having different. RTI respond in different ways to the same temperature and velocity of ceiling jet. Thus great care should be taken to decide installed spacing of heat detection devices by considering above effects.

  • PDF

Characteristics of Supersonic Jet Impingement on a Flat Plate

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.134-143
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

Conceptual Design of KSLV-II Launch Complex Flame Deflector (한국형발사체 발사대시스템 화염유도로 개념 설계 (I))

  • Oh, Hwayoung;Kang, Sunil;Kim, Daerae;Lee, Jungil;Um, Hyungsik;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.75-81
    • /
    • 2014
  • The flame deflector should be constructed to minimize the induced environmental effects on the launch vehicle and to minimize the exhaust impingement effects on the launch complex structures during the lift-off operation. Therefore, it should be designed to avoid recirculation and reverse flow of rocket exhaust plumes. The circumstance around launch complex and characteristics of launch vehicle should be taken into consideration for the flame deflector design. In this paper, we designed the flame deflector reflecting KSLV-II 1st engine characteristics and analyzed the effect of exhaust plumes related to change geometry by means of computational flow analysis.

Radium Isotope Ratio as a Tracer for Estimating the Influence of Changjiang Outflow to the Northern Part of the East China Sea (라듐 동위원소 방사능비를 추적자로 사용한 동중국해 북부 해역에서 장강 유출수의 영향 추정)

  • Kim, Kee-Hyun;Kim, Seung-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.133-142
    • /
    • 2009
  • In order to understand the present environmental condition and future impingement of Changjiang(Yangtze River) outflow upon the adjacent seas after the scheduled completion of the Sanxia (Three Gorges) Dam in 2009, we tried to estimate the mixing ratios among surface waters of three end-members: Changjiang Water (CW), Kuroshio Water (KW), and East China Sea Water (ECSW) using $^{228}Ra/^{226}Ra$ activity ratio and salinity as tracers. Water samples were collected from 32 stations in November 2005 (R/V Tamgu 3), from 20 stations in July 2006 (R/V Ocean 2000) and from 17 stations in August 2006 (R/V Ieodo) in the northern part of the East China Sea. Radium isotopes in ~300 liters of surface seawater were extracted onboard by filtering through manganese impregnated acrylic fibers and following coprecipitation as $Ba(Ra)SO_4$. Activities of radium isotopes were determined by a high purity germanium detector. Results show that the fraction of CW was in the range of 1-23% in the study area, while KW was in the range of 0-30 % and ECSW 58-100 %. The eastward plume of Changjiang outflow, commonly observed in satellite images during summer and also displayed by the eastward-decreasing CW fraction in this study, could be attributed to Ekman transport caused by the SE monsoon prevailing in this region during summer. Results of this study showed that in the drought season, there was a little or no fraction of CW in the study area. Concentration of dissolved inorganic nitrogen (DIN) showed strong positive relationship with the fraction of CW, suggesting Changjiang as the major source of nitrogen. The mixing curve of DIN indicates the removal of nitrate by biological uptake during the mixing of CW with ambient seawater in the study area.

  • PDF