• Title/Summary/Keyword: Plug Valve

Search Result 36, Processing Time 0.027 seconds

Estimation of Hydrocarbon Oxidation by Measuring He Concentrations in an SI Engine Exhaust Port (프로판 엔진의 배기 포트에서 탄화수소 산화율 추정)

  • Yi, Hyung-Seung;Park, Jong-Bum;Min, Kyoung-Doug;Kim, Eung-Seo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.660-667
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, concentrations of individual HC species were measured in exhaust process, the degree of oxidation were obtained. Using a solenoid-driven fast sampling system on single-cylinder research engine fueled with 94% propane, the profiles of unburned hydrocarbons (HCs) and non-fuel HCs with a propane fueled engine were obtained from several locations in the exhaust port during the exhaust process. The sampled gases were analyzed using a gas chromatography of HC species with 4 or lesser carbon atoms. The change of total HC concentration and HC fractions of major components through the exhaust port were discussed. The results showed that non-uniform distribution of HC concentration existed around the exhaust valve and changed with time, and that the exhaust gas exhibited nearly uniform concentration profile at port exit, which was due to mixing and oxidation. Also it could be known that bulk gas with relatively high HC concentration came out through the bottom of the exhaust valve. To estimate the mass-based degree of HC oxidation in the exhaust port from measured HC concentrations, a 3-zone diagnostic cycle simulation and plug flow modeling were used. The degree of oxidation ranged between 26 % and 36 % corresponding to the engine operation conditions.

Design and Performance Evaluation of Visualization System for Measuring the Void Fraction of Two-phase Flow (다상 유동 Void Fraction 가시화 장치 설계 및 성능 평가)

  • Choi, Chang-Hyun;Choi, Seong-Won;Song, Simon
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • A two-phase flow observed in a heat exchanger or nuclear power generation often has a profound effect on undesirable noise or flow characteristics. Void fraction, which refers to the ratio of gas (or liquid) to the total fluid, affects heat transfer coefficient, vibration and so forth. In other words, void fraction is one of most important parameters in two-phase flow since it contributes to comprehend the characteristics of two-phase flow. We developed a two-phase flow visualization system to measure cross-sectional and volumetric void fractions by using quick closing valves and image processing software. With this system, we could observe the plug, slug, and stratified flow patterns of two-phase flow and measure a myriad of void fractions. As a consequence of the experiment, we found that the estimated void fractions were largely coincident with the predictive values by Chisholm model.

A Study on the Factors of Fuel-Film Formation in an EGI Gasoline Engine (전자 제어식 가솔린 엔진의 벽류 생성 요인에 관한 연구)

  • Kim, Bong-Gyu;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1530-1537
    • /
    • 1998
  • Mixture formation is one of the significant factors to improve combustion performance of an spark ignition engine. This is affected by spray and atomization characteristics of injector. In the case of EGI system, air-fuel mixing period is so short that a lot of fuel-film and liquid-fuel flow into cylinder. Since this fuel-film is not burnt perfectly in cylinder, it is exhausted in the form of HC emission. In this paper, three measurement techniques were utilized to measure spray characteristics and the amount of fuel-film in the cylinder. At first, PMAS was used to measure the spray characteristics such as size distributions, SMD, and spray angle. Secondly the amount and distribution of fuel-film which flow into through intake valve could be measured quantitatively using the fuel-film measuring device. And lastly, by optical fiber type spark plug used to detect the diffusion flame, the amount of unburned HC was measured. As the result of these experiments, the information of optimal spray characteristics and injection condition to minimize fuel-film could be built up.

Experimental Study on the Performance Characteristics of Air Hybrid Engine (Air hybrid 엔진의 구동 특성에 관한 실험적 연구)

  • Lee, Yong-Gyu;Kim, Yong-Rae;Kim, Young-Min;Park, Chul-Woong;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.50-56
    • /
    • 2011
  • A preliminary experimental study of new concept air hybrid engine, which stores compressed air in the tank during braking and re-use it to propel vehicle during crusing or acceleration, was carried out in this study. A single cylinder engine was modified to realize the concept of air hybrid engine. Independent variable valve lift system was adopted in one of the exhaust valves to store the compressed air into the air tank during compression period. An air injector module was installed in the place of spark plug, and the stored compressed air was supplied during the expansion period to realize air motoring mode. For air compression mode, the tank with volume of 30 liter could be charged up to more than 13 bar. By utilizing this stored compressed air, motoring work of 0.41 bar of IMEP(Indicated mean effective pressure) at maximum can be generated at the 800rpm conditions, which is higher than the case of normal idle condition by 1.1 bar of IMEP.

Ethanol Production from Raw Starch by Co-Immobilized Mixed Rhizopus japonicus and zymomonas mobilis (Rhizopus japonicus와 Zymomonas mobilis의 혼합고정화 배양계에 의한 생전분으로부터 에탄올 생산)

  • 최수철;이상원;박석규;성찬기;손봉수;성낙계
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.4
    • /
    • pp.708-714
    • /
    • 1996
  • Ethanol production from raw starch was performed using the co-immobilized culture system of Rhizopu japonicus and zymomonas mobilis(R-Z). Glucose Production in immobilized R. japonicus culture was 2-fold higher than that in free cell culture. Ethanol production was 1.67g/L(Yp/s, 0.094) and 6.549/L(Yp/s, 0.38) in R-Z and R-Z 24 culture system, respectively. R-Z system was modified and designated as R-Z 24 system by replacing cotton plug with silicon check valve after 24h fermentation with R-Z system. Optimal substrate concentration for ethanol production in batch culture was 5%(w/v) and ethanol concentration produced was 15.02g/L(Yp/s, 0.36). Ethanol yield(Yp/s, 0.38) in fed-batch culture of 5 times with 2%(w/v) substrate was equal to that in batch culture of 2%(w/v) substrate.

  • PDF

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.