• Title/Summary/Keyword: Plucked string instrument

Search Result 4, Processing Time 0.018 seconds

Physical Modeling of Plucked String Based on Fixed Spatial Sampling Interval (고정된 공간 축 샘플링 간격을 적용한 뜯는 현악기의 현에 관한 물리적 모델링)

  • 강명수;김규년
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • In physical modeling of plucked string instruments, the vibration of a string is typically simulated by the linear system. Currently the Digital Waveguides of J.O.Smith[1] are widely used to get a high quality sound of the plucked string instrument. He used the wave equation to derive the Digital Waveguides and emphasized the time variable. In this thesis, new model of plucked string is proposed to improve the sound quality emphasizing the spatial variable of the wave equation. In our model, we used the fixed sampling interval which is not dependent on the speed of the wave. So we could get more detailed description of wave movement by the time variable. As a result, the new model could produce a higher quality sound of plucked string instrument.

  • PDF

Development of Loop Filter Design of Plucked String Instruments (개선된 발현악기의 루프 필터 설계 방법)

  • Cho, Sang-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • This paper describes a development of a loop filter design in a physical modeling of the plucked string instrument. The conventional method proposed by V$\"{a}$lim$\"{a}$ki cannot estimate right parameters if a sound has either very short sustain or no sustain. In order to overcome this drawback, we propose the use of the decay region and 5 to 20 harmonics of the sound in the estimation of loop filter parameters. The most appropriate filter coefficient is chosen by frequency signal to noise ratio. To verify the performance of the proposed method, the guitar, gayageum and geomungo were selected as the target because they have different shape, structure, and material of strings. Regardless of the duration of harmonics, the proposed method was able to estimate the loop filter parameters representing frequency-dependent damping of harmonics.

Sound Synthesis of Gayageum by Impulse Responses of Body and Anjok (안족과 몸통의 임펄스 응답을 이용한 가야금 사운드 합성)

  • Cho Sang-Jin;Choi Gin-Kyu;Chong Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.102-107
    • /
    • 2006
  • In this paper, we propose a method of a sound synthesis of Korean plucked string instrument, gayageum, by physical modeling which use impulse responses of body and Anjok. Gayageum consists of three kinds of systems: string, body, and Anjok. These are a serial combination of linear time invariant systems. String can be modeled by digital delay line. Body and Anjok can be estimated by their impulse responses. We found three resonance frequencies in the body impulse response, and implemented resonator as body. Anjok was implemented as high pass filter in fundamental frequency band of gayageum. RMSEs of synthesized sounds are distributed from 0.01 to 0.03. It was difficult to distinguish the resulting synthesized sounds from the originals sound by ear.

  • PDF

Implementation of Parallel Processor for Sound Synthesis of Guitar (기타의 음 합성을 위한 병렬 프로세서 구현)

  • Choi, Ji-Won;Kim, Yong-Min;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.191-199
    • /
    • 2010
  • Physical modeling is a synthesis method of high quality sound which is similar to real sound for musical instruments. However, since physical modeling requires a lot of parameters to synthesize sound of a musical instrument, it prevents real-time processing for the musical instrument which supports a large number of sounds simultaneously. To solve this problem, this paper proposes a single instruction multiple data (SIMD) parallel processor that supports real-time processing of sound synthesis of guitar, a representative plucked string musical instrument. To control six strings of guitar, we used a SIMD parallel processor which consists of six processing elements (PEs). Each PE supports modeling of the corresponding string. The proposed SIMD processor can generate synthesized sounds of six strings simultaneously when a parallel synthesis algorithm receives excitation signals and parameters of each string as an input. Experimental results using a sampling rate 44.1 kHz and 16 bits quantization indicate that synthesis sounds using the proposed parallel processor were very similar to original sound. In addition, the proposed parallel processor outperforms commercial TI's TMS320C6416 in terms of execution time (8.9x better) and energy efficiency (39.8x better).