• 제목/요약/키워드: Plow-type

검색결과 14건 처리시간 0.025초

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

시뮬레이션에 의한 한국 논 토양의 경운저항 특성 (Draft Characteristics of Korea Paddy Field by Computer Simulation)

  • 이규승;박원엽;우상하
    • Journal of Biosystems Engineering
    • /
    • 제24권3호
    • /
    • pp.195-208
    • /
    • 1999
  • A computer simulation was carried out to investigate draft characteristics of Korean paddy field for obtaining the basic reference to the selection of optimum moldboard type suitable for Korean paddy field conditions. Cylindrical, cylindroidal, semihelical moldboard plows, and one type of oriental Janggi were used for simulation. A series of soil bin experiments was conducted to compare the experimental results with the predicted drafts from computer simulation using the cylindroidal moldboard plow. The computer model predicted draft force with 1~12% error at 12~16cm plowing depth which is the most conventional plowing depth in the rural area in Korea. Thus, the computer model was considered to be good enough for simulation. Due to the different plowing width of experimental plows, specific draft was selected for comparison by computer simulations. Specific draft of cylindrical moldboard plow was ranged from 3 to 6 N/$\textrm{cm}^2$ according to the soil conditions, plowing speed and plowing depth, 2.5~3.0 N/$\textrm{cm}^2$ for semihelical moldboard plow.

  • PDF

MEASUREMENT OF FIELD PERFORMANCE FOR TRACTOR

  • M. J. NahmGung;Park, C. H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.819-826
    • /
    • 2000
  • This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.

  • PDF

플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석 (Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation)

  • 이시언;김택진;김용주;임류갑;김완수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권2호
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

Strength analysis of the driving shift gears for a 67 kW class agricultural tractor according to tire type

  • Baek, Seung Min;Kim, Wan Soo;Kim, Yeon Soo;Baek, Seung Yun;Lee, Nam Gyu;Moon, Seok Pyo;Jeon, Hyeon Ho;Choi, Young Soo;Kim, Taek Jin;Kim, Yong Joo
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1147-1158
    • /
    • 2020
  • The purpose of this study was to measure the engine torque and rotational speed of a 67 kW class agricultural tractor according to tire type during plow tillage and to analyze the gear strength of the driving shift for the tractor. A field test was performed under the condition with a single tire (Test A) and dual tires (Test B) to increase the ground width of the rear tires. A load monitoring system was developed, and the engine torque and rotational speed were measured using controller area network (CAN) communication. The engine torque and rotational speed during plow tillage were calculated as the equivalent torque and speed using Palmgren Miner's rule. As a result, the equivalent torque and speed in Test A and Test B were 181.0 Nm and 1,913 rpm and 206.1 Nm and 2,130 rpm, respectively. As the ground width of the rear tire was increased, the bending stress in Test B was about 9.9 to 10.5% higher than that of the Test A, and the contact stress was about 4.6 to 4.9% higher than that of the Test A. Under all conditions, the safety factor for the bending and contact stress was 1 or more. Thus, the driving shift gears for the dual tire type are considered safe.

The Growth phase and yield difference of Kenaf(Hibiscus cannabinus L.) in reclaimed land according to the source and physical types of organic materials

  • Kang, Chan Ho;Lee, In Sok;Yoo, Young Jin;Seo, Sang Young;Choi, Kyu Hwan;Lee, Ki Kwon;Na, Young Eun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.369-369
    • /
    • 2017
  • To improve the reclaimed land soil, we put organic materials (Chopped kenaf, decomposed rice hull, rice straw, pellet type manure compost) into reclaimed land for 3,000 kg per 10a. As a result, EC of reclaimed soil was lowered by 58% ($1.2dS/m{\rightarrow}0.5$), content of soil organic material was risen from 6.7 g/kg to 16.0 (1.4 fold ${\uparrow}$), porosity of soil was elevated from 1.57 % to 1.31 (16.6% ${\downarrow}$), soil hardness was reduced from 20.2 mm to 17.9 (11.4% ${\downarrow}$) and plow layer soil was deepen from 19.8 cm to 26.8 (35% ${\uparrow}$). In the wake of physiochemical improvement of reclaimed soil, the growth phase of crops became better contrast to non-treatment. For example the plant height of Kenaf (Hibiscus cannabinus L.) cultivated in reclaimed land containing organic materials was lengthen by 18.8%. Especially, the improvment effect of pellet type manure compost and rice straw was more preferable. When the kenaf was cultivated in reclaimed land containing organic materials, the yield was become higher. The average yield of organic materials treatment was 9,218 kg/10a, and it was 2.1 times higher than non-treatment (4,368kg/10a). And the effective treatments to increase yields were pellet type manure compost (10,848 kg/10a, 148% ${\uparrow}$), rice straw (120% ${\uparrow}$) and chopped kenaf (95% ${\uparrow}$). To intensify the effect of physicochemical enhancement of reclaimed land soil and improving yields, we put into various physical types of organic materials (pellet type, liquid type, powdered type). The most effective organic materials type for enhancement of physicochemical properties (EC of reclaimed soil was lowered, content of soil organic material was risen, porosity of soil was elevated, soil hardness was reduced, plow layer soil was deepen) was pellet. And source to maintain better growth phase and get more yield were liquid and pellet types. When we used pellet type organic material, the plant height of kenaf was lengthen by 41% in comparison with non-treatment and yield was more than 122% more. And also liquid type could get more yield (by 127%) and growth phase (by 38%)

  • PDF

영해용선박의 선수형상 설계추정에 관한 연구 (A Study on the Prediction of the Bow Form Design for Icebreakers)

  • 고상룡;박명규
    • 한국항해학회지
    • /
    • 제15권3호
    • /
    • pp.73-97
    • /
    • 1991
  • The analysis and investigation are described for White's[2] equations compared to the equations of Runeburg[3] and Milano[5] for continuous icebreaking mode, Tunik[8-1] and Ghoneim[8-2] for ramming icebreaking mode. Calculation results compare reasonably well with published model-scale and full-scale icebreaker data by Baker[1] and Dick[11]. During continuous and ramming mode operation, using characteristics of an incebreaker, down ward force on ice and standard ice thickness broken are predicted. Additionally draft, trim and extraction difficulty are also predicted. The bow part line of an icebreakin $g^{ply}$ vessel is designed aiming to maximize the ice breaking capabiltiy as following conditions-low bow angle[20 degrees] at designed waterline, small spread angle complement [6 degrees] at designed waterline, small spread angle complement [6 degrees] and high propeller thrust [220tons]. with plow, two reamers and wave type bumper.

  • PDF

Dynamics of Exchangeable Magnesium of Soil in Long-term Fertilization Experiment

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.641-647
    • /
    • 2015
  • Monitoring of soil fertility by long-term application of fertilizers is necessary to improve the fertility of soil and the productivity of crop. The objective of this study was conducted to investigate the changes of exchangeable Mg by continuous application of fertilizers from 1969 to 2014. The treatments were no fertilization (No fert.) and fertilization (NPK, NPK+C, NPK+S, and NPK+CS). The concentration of exchangeable Mg in No fert., NPK+C, and NPK+S treatments tended to increase from 1965 to 1975, but decrease gradually from 1976 to 1987, and increase again after 1988. Based on these, the changes of exchangeable Mg were divided into period I ('69 ~'75), period II ('76~'87), and period III ('88~'14). Especially, exchangeable Mg decreased in the period II. This was presumed that a significant amount of Mg from topsoil were leached into subsoil by break of plow pan and some of subsoil was incorporated into topsoil according to change of plowing depth by replacement of tillage machinery. It could be possible that exchangeable Mg in NPK, NPK+S, and NPK+CS was accumulated in the depth of 15~20 cm. For the period III, exchangeable Mg in No fert., NPK, NPK+C, NPK+S, and NPK+CS treatments increased at rates of 0.013, 0.018, 0.015, 0.023, and $0.024cmolckg^{-1}{\cdot}yr^{-1}$ respectively. Exchangeable Mg level in NPK+S was lower than the other treatments in the period I and period II, but higher than in the period III. This result was attributed to replacement of silicate fertilizer type from wollastonite (Mg 0.3%) to silicate fertilizer (Mg 3%). Also, exchangeable Mg level of No fert. treatment increased, which showed that Mg concentration of irrigated water had the greatest impact on Mg accumulation of soil. Recently, Mg level of irrigated water tended to increase, indicating that Mg concentration of water will affect greatly the concentration of exchangeable Mg of soil in the future. Like these, the changes of exchangeable Mg were greatly influenced by agricultural environment such as plowing depth, plow pan, content of fertilizer, and quality of irrigated water. Considering these agricultural environment, the proper management of soil is needed for the improvement of soil fertility and crop productivity.

경운방법 및 비료종류가 이탈리안 라이그라스의 사초수량 및 품질에 미치는 영향 (Effect of Tillage System and Fertilizer Type on the Forage Yield and Quality of Italian Ryegrass)

  • 김종덕;셔윈 아부엘;전경협;권찬호
    • 한국초지조사료학회지
    • /
    • 제29권4호
    • /
    • pp.313-320
    • /
    • 2009
  • 경운방법과 비료종류를 달리하였을때 이탈리안 라이그라스의 사료수량과 품질을 비교하기 위하여 수행하였다. 본 시험은 $2{\times}2=4$ 요인시험으로 경운방법은 관행(경운과 로터리)과 무경을 두었으며, 비료종류는 화학비료와 퇴비를 두었다. 이탈리안 라이그라스의 초장, 건물률, 건물수량, TDN 수량 및 CP 수량은 경운방법에서 처리간에 유의적인 차이가 있었다. 특히 무경운이 관행경운(경운+로터리)보다 건물수량, TDN 수량 및 CP 수량이 많았다. 그러나 비료의 종류에서는 처리간의 사초 생산성의 차이가 없었다. 이탈리안 라이그라스의 조단백질 함량은 처리간에 차이가 없었다. 한편 ADF 및 NDF 함량에서는 무경운이 경운보다 많았으나 TDN 및 RFV 함량은 경운이 무경운보다 높았다. 비료의 종류에서 ADF 함량은 퇴비구가 높았으나 TDN 함량은 화학비료가 높았다. 이상의 결과를 종합해 볼 때 이탈리안 라이그라스에서 경운방법은 무경운이 관행경운보다 수량은 많으나 품질은 낮았다. 한편 비료의 종류에서는 사초수량의 차이는 없고 품질 차이도 적었다.

Study on a Coaxial Plasma Gun (III)

  • Bak, Hae-Ill;In, Sang-Ryul;Chung, Kie-Hyung;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.163-170
    • /
    • 1980
  • 4KJ의 에너지 뱅크(16.5KV, 35nH)를 사용하여 Mather형의 플라즈마총을 1 torr이하의 낮은 기체압력에서 동작시키면서 플라즈마의 효율적인 집속조건을 구하였다. 중수소기체의 충전압력이 0.18torr, 저장에너지가 3.8KJ일때 방전전류의 최고치는 180KA이었고 플라즈마의 축방향 평균속도는 약 $7cm/\mu\textrm{s}$이었다. 이것은 snowplow모델에 의해 계산된 속도보다 작은 값인데 이는 절연재 표면을 통한 전류의 손실에 기인하는 것으로 생각된다. H. Bruzzone의 플라즈마 집속장치(1KJ, 16KV, $4.2\mu\textrm{s}$)에 비해 본 실험에서는 기체압력이 낮은 역역에서 플라즈마 접속이 일어났다. 이는 이 실험에서 사용한 플라즈마총의 크기가 저장에너지에 비해 크고 또 잔여기체의 함량이 비교적 높기 때문이다. 집속된 플라즈마로 부터 방출되는 중성자는 Long counter를 사용해서 계측했다.

  • PDF