• Title/Summary/Keyword: Plow operation

Search Result 31, Processing Time 0.023 seconds

Analysis of Variations in Mechanical Properties of Soil by Tillage Operations (경운작업에 의한 토양 역학적 특성의 변이 특성)

  • Park, J.G.;Lee, K.S.;Cho, S.C.;Noh, K.M.;Chung, S.O.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2007
  • In the study, the cone index, the cohesion and the internal friction angle of soil were measured before and after tillage in order to suggest relative improvement in soil properties by comparing the two measured values before and after tillage. The tillage methods tested in the study were five combinations of plowing and rotovating; one plow tillage operation, one plow followed by one rotary, one plow followed by two rotary, one rotary without plow and two rotary without plow. The experiments were performed in a soil bin in Sunggyunkwan Univ. and in four selected test fields in Yeoju, Seodun-Dong, Suwon (especially, two different fields) and Chungju. In general, the internal friction angle and cohesion of soil increased with the increase of soil compaction. After applying the tillage operations, the internal friction angle reduced by 14 degree and the cohesion decreased up to about $2.2N/cm^2$ on the soil bin in comparison with those before tillage. The two values, however, reduced by 9 degree and up to about $1.0N/cm^2$ on the tested fields. The CIs for all the tillage operations on the soil bin and on 4 different test fields were decreased by 800 kPa in comparison with those before tillage. The best combination of tillage operations for decreasing the CIs of soil was one plow operation followed by one rotary. The CIs for one plow operation followed by two rotary were slightly higher than that for one plow operation followed by one rotary because one plow operation followed by two rotary crushed down the soil excessively, so that the porosity of soil decreased.

Consumed-Power and Load Characteristics of a Tillage Operation in an Upland Field in Republic of Korea

  • Kim, Jeong-Gil;Kim, Young-Joo;Kim, Jung-Hun;Shin, Beom-Soo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.83-93
    • /
    • 2018
  • Purpose: This study derived the consumed power and load characteristics of a tillage operation performed in an upland field located in Seomyeon, Chuncheon, Rep. Korea, where potatoes and cabbages were cultivated in two crops. Methods: A plow and rotavator were mounted on a tractor with 23.7 kW of rated power to perform the tillage operation. The work conditions were determined, considering the actual working speed of the tillage operation performed by the local farmers. The power consumption of the rear axle, engine, and power take-off (PTO), PTO torque, and tractive force were measured under each work condition. The consumed power and load characteristics were analyzed using their average values. Results: The rotary-tillage operation consumed more engine power than the plow operation for the same tractor-transmission gear condition. The PTO in the rotary-tillage operation and the rear axle in the plow operation consumed the most power. The power consumption of the engine and the PTO for the rotary-tillage operation tended to increase as the transmission gears of the tractor and the PTO became higher. In contrast, the rear-axle power consumption was insignificant. In addition, the PTO torque tended to rise as the tilling pitch increased. For the plow operation, the drawbar power and the rear axle power accounted for 68-90% of the engine power. The engine and rear axle power, drawbar power, and tractive force tended to rise as the working speed increased. Conclusions: The power consumption and load characteristics differed for the plow and rotary-tillage operations. They may also differ depending on the soil conditions. Therefore, the power consumption and load characteristics in various work environments and regions should be analyzed, and reflected in the design of tractors and working implements. The results derived from this study can be used as a reference for such designs.

Study on the Dynamic Balance of the Power-tiller Plow System (동력경운기 Plow System의 역학적 평행개선에 의한 연구)

  • 송현갑
    • Journal of Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.26-39
    • /
    • 1980
  • A study was investigated to find out the mechanical optimum conditions of power tiller-plow system on both paddy field and upland. Mathematical model was developed for the theoretical analysis of this system and the experimentation on the field was carried out with two different sizes of 5PS and 8PS power tiller equipped with rubber tire. 1) The relationship between the plowing depth and draft resistance of the power tiller-plow system was a quadratic function. 2) The minimum point of the specific draft resistance of the 5 PS plow was found at the smaller plowing depth than that of 8 PS plow, therefore we can find that the curved surface of 5PS plow bottom should be improved for the effective plowing operation. 3) As the improvement of the mechanical balance by the desirable change of the curved surface of plow bottom, the relative position of hitch point and dimension of plow beam would be realized, the 5 PS power tiller could be used to plow deeply (about 16-17cm). 4) The virtual acting point of the total draft resistance on the plow bottom approached to the land side as the plowing depth increased. 5) The resultant of vertical reaction force $R_2$ on the landside was increased with the plowing depth, while the vertical reaction force $R_1$ on the wheel was decreased as the slope angle of the body of power tiller increased. 6) For the effective plowing operations ; a) The slope angle of the body should be as small as possible. b) The diameter of the wheel should be as small possible. c) The horizontal and vertical distances $l_2, h_1$ between the wheel axis and plow bottom should be as large as possible. 7) To use the 5PS power tiller as the major unit of agricultural machinery, the curved surface of the 5 PS plower bottom and the mechanism of attachment between the power tiller and the plow should be changed as the indications of this study, and in addition to these, the new operation method of the field work should be developed.

  • PDF

Analysis of Operation Status for Agricultural Tractors Over 75 kW (75 kW 이상 농용트랙터 작업실태 분석)

  • Han, Deuk-Hee;Kang, Sung-Il;Yoo, Soo-Nan;Suh, Sang-Ryong;Choi, Young-Soo;Kang, Young-Seon;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.397-406
    • /
    • 2011
  • In this study, surveys on operation status of the 73 tractors with rated power of over 75 kW from six provinces in Korea were performed to obtain basic data required for development and efficient use of the high-power and high-performance tractors. And types of tractors and implements, operation crops, types of operations, annual operation areas, annual operation days, annual operation hours, operation speeds and widths, and problems and improvements in use were investigated. Most (91.7%) of the tractor surveyed were operated for forage and silage crops such as rice straw, whole barley, rye grass, reed canary grass, sudan grass, and the remains were operated for upland crops such as ginseng, sweet potato, potato, chinese cabbage, radish. Main operations of the tractors were cutting, baling, and wrapping for forage crops, plow tillage, rotary tillage, and manure spreading. About half (47.9%) of the tractors were used exclusively for forage crop harvesting such as forage crop cutting, forage baling, and bale wrapping, 24.5% of the tractors were used exclusively for plow or rotary tillage, and 27.4% of the tractors were used for both forage crop harvesting, and plow or rotary tillage. For the tractors with power ranges of 75~83, 89~94, 98~101, 113, 124 kW, average annual operation areas per tractor for plow tillage, rotary tillage, forage crop harvesting (cutting, baling, wrapping), and manure spreading operations were analyzed as 112.6. 144.8, 158.9. 390.0. 215.6 ha, respectively. and total average annual operation area per tractor was 171.3 ha. Average annual operation days per tractor for those operations were analyzed as 24.1, 28.9, 38.3, 55.4, 33.4, respectively, and total average annual operation days per tractor was 33.6. Average annual operation hours per tractor for them were analyzed as 260.0, 321.6, 408.1, 664.8, 413.8, respectively, and total average annual operation hours per tractor for the all tractors was 377.1. Ranges of operation widths of plow tillage, rotary tillage, forage crop cutting, forage baling, bale wrapping, and manure spreading operations were shown as 1.5~2.6, 2.3~3.0, 1.8~3.2, 1.8~2.0, 1.8~2.3, 3.1~6.6 m, respectively. Ranges of operation speed of plow tillage, rotary tillage, forage crop cutting, forage baling, bale wrapping, and manure spreading were shown as 6~9, 4~11, 9~16, 8~15, 8~17, 12~16 km/h, respectively.

A Comparison Test of Eastern and Western Plow in Draft Resistance (우리나라 쟁기와 Plow의 산인저항의 관한 비교연구)

  • 최재갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.3
    • /
    • pp.2035-2042
    • /
    • 1970
  • Korean Janggi and Western plow to have developed for a long time in the east and west were tested and compared in their draft resistance. The charaderistic of Korean Janggi and plow to be able to make deep plowing, on of the most important factors influeneed the increased yield, were ofserved. The study was undertaken to obtain these basic factors' to device and construct the deep plowing Janggi. The results were as follow; 1. The draft resistance of Korean Janggi far less than that of plow and on the dry field, the influence of soil moisture contant to the draft resistance was larger in the Korean Janggi than in the western plow, but on the rice paddy, there was not differences between them. 2. The plow was more stable than that of Janggi in their operation. 3. The relation ship between the specific draft resistance and plowing depth was shown bygthe carved equation. $$K=Ax+\frac{B}{x}+C$$(K ; specific draft restance, x; plowing depth) A, B, C; Constant controled by soil and instrument factor) 4. Minimam values of the specific draft resistance were as follow; a. On the dry field; Korean Janggi; x = $8{\sim}14cm$ $4K=280{\sim}330gr/cm^2$$ Westean plow; x=$10{\sim}12cm$ $$K=480{\sim}490gr/cm^2$$ 6. On the rice paddy; Korean Janggi; x=$8{\sim}12cm$ $$K=255{\sim}280gr/cm^2$ Western plow; x=$7{\sim}10cm$ $$K=415{\sim}420grc/m^2$$

  • PDF

Load and Safety Analysis for Plow Operation in Dry Fields (건답에서 쟁기작업의 부하특성 및 안전도 분석)

  • Lee, Ju-Yeon;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2019
  • This study derives load characteristics and analyzes the safety of plowshares operating in dry fields. We mounted a three-blade, reversible plow on a 23.7 kW tractor and measured the plow's tractive force as well as the torque from the engine output shaft on the rear axle under various working speeds (L4, M1, M2, M3). We chose a Korean test site of Seomyeon, Chuncheon with sandy soil texture, as determined using the USDA method. We constructed the load spectrum for torque and tractive force using measured data and derived the fatigue life of the plowshare from a stress-cycle (S-N) curve of the plow material. Our results show that the M3 gear maximizes the driving shaft torque loads and, applying the tractive force load spectrum, creates a cumulative damage sum of $4.14{\times}10^{-5}$. Considering sampling time, we estimate a fatigue life of 805 hours while using the M3 gear. When using the other working speeds, however, all of the stress levels fell within the endurance limits and, therefore, our model predicts infinite plowshare lifetimes. For this analysis, we used a yield strength of 1,079 MPa for the plowshare and static safety factors, analyzed using the maximum stress, between 6.83 and 8.63 under each working speed.

MEASUREMENT OF FIELD PERFORMANCE FOR TRACTOR

  • M. J. NahmGung;Park, C. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.819-826
    • /
    • 2000
  • This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.

  • PDF

Measurement and analysis of tractor emission during plow tillage operation

  • Jun-Ho Lee;Hyeon-Ho Jeon;Seung-Min Baek;Seung-Yun Baek;Wan-Soo Kim;Yong-Joo Kim;Ryu-Gap Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.425-436
    • /
    • 2023
  • In Korea, the U.S. Tier-4 Final emission standards have been applied to agricultural machinery since 2015. This study was conducted to analyze the emission characteristics of agricultural tractors during plow tillage operations using PEMS (portable emissions measurement systems). The tractor working speed was set as M2 (5.95 km/h) and M3 (7.60 km/h), which was the most used gear stage during plow tillage operation. An engine idling test was conducted before the plow tillage operation was conducted because the level of emissions differed depending on the temperature of the engine (cold and hot states). The estimated level of emissions for the regular area (660 m2), which was the typical area of cultivation, was based on an implement width of 2.15 m and distance from the work area of 2.2 m. As a result, average emission of CO (carbon monoxide), THC (total hydrocarbons), NOx (nitric oxides), and PM (particulate matter) were approximately 6.17×10-2, 3.36×10-4, 2.01×10-4, and 6.85×10-6 g/s, respectively. Based on the regular area, the total emission of CO, THC, NOx, and PM was 2.62, 3.76×10-2, 1.63, and 2.59×10-4 g, respectively. The results of total emission during plow tillage were compared to Tier 4 emission regulation limits. Tier 4 emission regulation limits means maximum value of the emission per consumption power (g/kWh), calculated as ratio of the emission and consumption power. Therefore, the total emission was converted to the emission per power using the rated power of the tractor. The emission per power was found to be satisfied below Tier 4 emission regulation limits for each emission gas. It is necessary to measure data by applying various test modes in the future and utilize them to calculate emission because the emission depends on various variables such as measurement environment and test mode.

Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation (플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석)

  • Si-Eon Lee;Taek-Jin Kim;Yong-Joo Kim;Ryu-Gap Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

Development of a Moldboard Plow to Invert Furrow Slice at the Same Position (토양의 제자리 반전을 위한 몰드보드 플라우의 개발)

  • 이규승;박원엽;권병기
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.9-20
    • /
    • 2004
  • On the basis of design theory of soil inversion, two types of moldboard plow with secondary soil mover was designed and constructed to invert furrow slice at same position with furrow bottom. A series of soil bin experiment was carried to investigate the performance of prototypes. First prototype of new concept plow showed two kinds of problems during the preliminary experiment. For the plowing depth of 6cut the prototype did not invert the furrow slice, instead it just cut furrow bottom and the furrow slice returned to the original position. For the plowing depth of 8cm, there was soil clogging problem at the rear part of plow. From the above results it was concluded that the first prototype can not be used for the inversion of furrow slice at same position with furrow bottom. Second prototype could invert furrow slice at the same position with furrow bottom, but the performance was affected by soil moisture content soil hardness and plowing speed very much. For the higher soil moisture content, for the higher soil hardness and higher plowing speed, the prototype showed higher soil inversion performance. For the second prototype the inversion ratio was almost 100%, inversion angle was in the range of 90 to 100 degree and side displacement was less than 4 cm. But the furrow slice was not continuous, it was cut in the length of 30 to 40 cm. The reason why the furrow slice was cut in that length is blamed for the design of moldboard surface. The specific draft of prototype was in the range of 37.24 kN/㎡ to 42.14 kN/㎡ this value is a little higher than that of the conventional plow, or from 30.38 kN/㎡ to 33.32 kN/㎡. But the difference was not so big. The inversion performance of the second prototype for the field experiment was much better than that of soil bin experiment due to the better soil and operational conditions. Sticky and compacted soil conditions, and higher plowing speed was suitable for the plowing operation of the second prototype