• Title/Summary/Keyword: Plenum

Search Result 189, Processing Time 0.03 seconds

A Fundamental Study for Development of Unglazed Transpired Collector Control System in Windowless Pig House (무창돈사 내 무창기공형 집열기 제어 시스템 개발을 위한 기초적 연구)

  • Moon, Byeong Eun;Kim, Hee Tae;Kim, Jong Goo;Ryou, Young Sun;Kim, Hyeon Tae
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.175-185
    • /
    • 2016
  • In this study, manufactured experimental pig house (two pig house) and compared the changes in internal temperature and energy depending on the application of UTC control system for their utilizing of them as basic data for maintaining proper conditions for feeding environment and reducing heating energy depending on the UTC control system and program development, prior to applying the UTC system into pig house, representative agricultural facility. The control system ranges T1~T4 which is made to control a total of five output signals O1~O5 in the way of On/Off by using the algorithms of the program after measuring temperature scored 4 of total. Temperature setting was controlled with 28.0℃ in experimental pig house and 34.0℃ in UTC plenum, and output signal was controlled by comparing it with the measured temperature. During 3 days, the maximum temperature were measured at an average 31.8℃ when operated the control system in pig house. At the same time, the maximum temperature were measured 36.6℃ in comparison pig house, it was low temperature at 4.8℃ in experimental pig house than comparison pig house. Also, UTC plenum temperature was showed that rose at an average 50.5℃ by operation of the control program.

Design of Smart flap actuators for swept shock wave/turbulent boundary layer interaction control

  • Couldrick, Jonathan;Shankar, Krishnakumar;Gai, Sudhir;Milthorpe, John
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.519-531
    • /
    • 2003
  • Piezoelectric actuators have long been recognised for use in aerospace structures for control of structural shape. This paper looks at active control of the swept shock wave/turbulent boundary layer interaction using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and unimorph tip deflection, hence mass transfer rates. The actuators are modelled using classical composite material mechanics theory, as well as a finite element-modelling program (ANSYS 5.7).

Analytical Study on Stall Stagnation Boundaries in Axial-Flow Compressor and Duct Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.56-74
    • /
    • 2013
  • Stall stagnations in the system of axial-flow compressors and ducts occur in transition from deep surge conditions to decayed or converged stall conditions. The present study is concerned with the boundaries between the deep surges and the stagnation stalls on the basis of analytical results by a code on surge transients analysis and simulation. The fundamental acoustical-geometrical stagnation boundaries were made clear from examinations of the results on a variety of duct configurations coupled with a nine-stage compressor and a single stage fan. The boundary was found to be formed by three parts, i.e., B- and A-boundaries, and an intermediate zone. The B-boundary occurs for the suction-duct having a length of about a quarter of the wave-length of the first resonance in the case of very short and fat plenum-type delivery duct. On the other hand, the A-boundary occurs for the long and narrow duct-type delivery flow-path having a length about a fifth of the wavelength and relatively small sectional area in the case of short and narrow suction ducts. In addition to this, the reduced surge-cycle frequencies with respect to the duct lengths are observed to have respective limiting values at the stagnation boundaries. The reduced frequency for the B-boundary is related with a limiting value of the Greitzer's B parameter. The tendency and the characteristic features of the related flow behaviors in the neighborhood of the boundaries were also made clearer.

Performance test for the compressor of 100kW APU (100kW급 보조동력장치용 압축기 성능시험)

  • Lim, Byeung-Jun;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Kyoung-Jin;Baik, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.655-660
    • /
    • 2001
  • The performance test of a centrifugal compressor for APU(Auxiliary Power Unit) which is developed by the collaborative research of KARI and Samsung TechWin has been conducted. The investigated compressor consists of a curved inlet, a centrifugal impeller, a channel diffuser and a plenum chamber. The experiments were carried out in an open-loop centrifugal compressor test rig driven by a turbine. For three different diffusers, overall performance data were obtained at 80%, 90% and 97% of design speed. For the initially designed wedge-type diffuser, test results showed that the compressor was operated at a higher mass flow rate than the design requirement. By reducing the diffuser throat area, the compressor operating range was shifted to lower mass flow rate range. The test result of redesigned wedge-type diffuser showed high pressure loss. To reduce the diffuser loss, diffuser inlet radius was increased and airfoil-type of diffuser was adopted. This airfoil-type diffuser showed reasonal results in terms of design requirement.

  • PDF

Experimental Study on the Effect of Tip Clearance of a Centrifugal Compressor (팁 간극 영향으로 인한 원심 압축기 성능특성 시험연구)

  • Cha, Bongjun;Lim, Byungjun;Yang, Sooseok;Lee, Daesung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.30-37
    • /
    • 2001
  • The experimental study on the effect of axial clearance between the tip of impeller blades and stationary shroud has been performed. The investigated compressor, which is a part of a small auxiliary power unit engine, consists of a curved inlet, a centrifugal impeller, a channel diffuser and a plenum chamber. It was designed for a total pressure ratio of 4.3 and an efficiency of $77\%$ at design speed of 60,000 rpm. The experiments are carried out in an open-loop centrifugal compressor test rig driven by a turbine. For the four different clearance ratios Cr(clearance/impeller tip width) of 6.25, 10.93, 15.60 and 20.30 percent, the overall performance data are obtained at $97\%,\;90\%$ and $80\%$ of the design speed. The results show the overall pressure ratio decrease of $7.7\%$ and the efficiency loss of $8.7\%$ across the variation of clearance ratio near the design speed. It also indicates that the influence of tip clearance became weaker as the flow rate is reduced and the stable operating range is not significantly influenced by the change of clearance ratio.

  • PDF

Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle (초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향)

  • Kim, Woo-Young;Shim, Jae-Hwi;Lee, Yong-Ho;Kim, Hyun-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

Effects of Gap Resistance and Failure Location on prompt Fission Gas Release from a Cladding Breach

  • Tak, Nam-Il;Chun, Moon-Hyun;Ahn, Hee-Jin;Park, Jong-Kil;Rhee, In-Hyoung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.184-189
    • /
    • 1997
  • A prompt fission gas release model incorporating the resistance to gas flow in the gap was developed and the effects of gap resistance and failure location on prompt fission gas release from the cladding breach were assessed. The process of prompt fission gas release from the plenum and gap into the coolant was modeled in accordance with three major phenomena: (1) transient gas flow in the gap, (2) the growth of the fission gas bubble while it is still attached to the breach, and (3) the detachment of the fission gas bubble from the breach and mixing with the coolant. The cumulative mass release fraction by the present model was calculated for the case of Young-Gwang 3 & 4 nuclear fuel rod as a typical example. The results showed that the release behavior of prompt fission gas with time was different from the frictionless model which has frequently been used in a simplified approach, and that the location of cladding failure was another key factor for the prompt fission gas release process due to the resistance in the gap.

  • PDF

Numerical Analysis on the Internal Flow Field Characteristics of Wind Tunnel According to Contraction Type (수축부 형상에 따른 풍동 내부유동장 특성에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.5-12
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to investigate the internal flow fields characteristics according to wind tunnel contraction type. The turbulence model used in this study is a realizable $k-{\varepsilon}$ modified from the standard $k-{\varepsilon}$ model. As a results, the distribution of the axial mean velocity components along the central axis of the flow model is very similar to the ASME and BE types, and the cubic and cosine types. When the flow passes through the interior space of the analytical models, the flow resistance at the inlet of the plenum chamber is the largest at BS type contraction, but the smallest at cubic type contraction. The boundary layer thickness is the smallest in the cosine type contraction as the axial distance increases. The maximum turbulent kinetic energy in the test section is the smallest in the order of the contraction of cubic type and cosine type. Comprehensively, cubic type contraction is the best choice for wind tunnel performance, and cosine type contraction can be the next best solution.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRATIFICATION (열성층 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.12-17
    • /
    • 2005
  • A computational study of evaluation of current turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor. The turbulence models tested in the present study are the two-layer model, the shear stress transport (SST) model, the v2-f model and the elliptic blending mode(EBM). The performances of the turbulence models are evaluated by applying them to the thermal stratification experiment conducted at JNC (Japan Nuclear Corporation). The algebraic flux model is used for treating the turbulent heat flux for the two-layer model and the SST model, and there exist little differences between the two turbulence models in predicting the temporal variation of temperature. The v2-f model and the elliptic blending model better predict the steep gradient of temperature at the interface of thermal stratification, and the v2-f model and elliptic blending model predict properly the oscillation of the ensemble-averaged temperature. In general the overall performance of the elliptic blending model is better than the v2-f model in the prediction of the amplitude and frequency of the temperature oscillation.

Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines (First Paper) (4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구 (제1보))

  • 윤건식;우석근;서문진;신승한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1260-1271
    • /
    • 2001
  • The simulation program which predicts the gas behavior in a spark ignition engine has been developed and verified by the comparison with the experimental results foy the MPI engine, naturally aspirated and turbochared engines with a carburettor. First paper describes the calculations of the behavior of gas in the intake and exhaust system. The generalized method of characteristics including friction, heat transfer, area change and entropy gradients was used to analyse the pipe flow The constant-Pressure model was applied for the analysis of the flow through engine valved, and the constant-pressure perfect-mixing model was applied for the flow at manifold junction. The concept of the sudden area change was used for the muffler and catalytic convertor. Fer the plenum chamber in an MPI engine, constant-pressure model and constant-volume model were both examined. Through the comparison of predicted results with experiments, the simulation program was verified by showing good prediction of the behavior of IC engine qualitatively and quantitatively under wide range of operating conditions.

  • PDF