• Title/Summary/Keyword: Platoon dispersion model

Search Result 5, Processing Time 0.023 seconds

A Study on Sensitivity Analysis by PDF in T7F Model (T7F Model에서 차량군분산계수변화에 따른 민감도분석에 관한 연구)

  • Hwang, Eui-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.57-63
    • /
    • 2006
  • The purpose of this study is to correct data on 3 intersection ranging from Kwangchun INT. to Nongsung INT. by the means of VTR recording and site survey and to measure the responsiveness of performance index by diversifying the platoon dispersion factor in signal progression simulation. The results are as follows : 1. The value of platoon dispersion factor was 0.28-0.33. The value in up stream is lower than that of in down stream even on the same intersection. 2. The platoon index showed big changes, though performance index didn't according to platoon dispersion factor. Therefore the value of platoon dispersion factor which is inner variable in T7F can be fixed for 0.34. 3. There was only little divergence in performance index changes according to platoon dispersion factor in designing the progression or T7F model.

  • PDF

A Development of Macroscopic Simulation Model for Interrupted Flow using Shockwave (충격파를 이용한 거시적 단속류 시뮬레이션 모형개발)

  • Lee, Ho-Sang;Jung, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.191-201
    • /
    • 2008
  • It has been employed TRANSYT-7F and NETSIM to evaluate the validity and effectiveness of improvement on TSM(Transportation Systems Management). But T7F is hard to describe platoon compression and dispersion in actually, and NETSIM takes a long time for network coding, calibration and have difficulty in setting up saturation flow. While Shockwave Model have advantage which can describe platoon compression and dispersion in actually and shorten hours, convenience of application. But Shockwave Model apply unrealistic traffic flow relation ship(U-K curve) and simplify platoon because of difficulty in calculating shockwave's position and cross. For solving limitation of existing shockwave models, It develop new model with 2-regime linear model, New platoon model, Extended shockwave, etc. For verifying the validity of the proposed model, it was compared with delay of T7F and NETSIM by offset variation. In conclusion, it is thought that proposed model have outstanding performance to simulate traffic phenomenon.

A Study on TRANSYT Model-embedded Parameters (TRANSYT 모델의 내재 모개변수에 관한 연구)

  • 도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.6 no.1
    • /
    • pp.55-64
    • /
    • 1988
  • Prior to using any computer model, the program-embedded palameters showing significant differences from real world should be calibrated. This is especially true when the model is expected to be used fro various roadway and traffic condition. The calibration of TRANSYT model was conducted for the parameters of start-up delay, and lag, stop penalty(K), platoon dispersion factor, and saturation flow rate. The values of the parameters were obtained by theoretical methods from actual field measurements for discharging and arrival pattern. The sites elected for the study was an intersection of Dongil-Ro and Hwarang-Ro, and a 334 meter downstrean section from the intersection stop line on westbound Hwarang-Ro. The study results showed that the start-up delay was 2.6 sec, end lag was 1.0 sec, saturation flow rate was 2287 pcphgpl, platoon dispersion factor was 0.2-03, and stop penalty(K) was 32. However, since these parameters re apt to depend on traffic and roadway condition, it is doubtful whether the obtained values will be applicable to the area-wide situation other than this particular site.

  • PDF

A Study on Signal Control Algorithms using Internal Metering for an Oversaturated Network (내부 미터링을 이용한 과포화 네트워크 신호제어 알고리즘 연구)

  • Song, Myeong-Gyun;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.185-196
    • /
    • 2007
  • The aim of this research is to develop a signal control algorithm using internal metering to minimize total delay that vehicles go through, in case a network is oversaturated. To calculate total delay on the network, the authors first detect vehicles' arrivals and departures in the network through the detecting system, and chase the vehicles' flow in the links with a platoon dispersion model. Following these, the authors calculate the queue length in all the inks of the network through the chase of vehicles, deduce the stopped time delay, and finally convert the stopped time delay to the approach delay with a time-space diagram. Based on this calculated delay, an algorithm that calculates the level of the internal metering necessary to minimize the deduced approach delay is suggested. To verify effectiveness of this suggested algorithm, the authors also conduct simulation with the micro-simulator VISSIM. The result of the simulation shows that the average delay per vehicle is 82.3 sec/veh and this delay is lower than COSMOS (89.9sec/veh) and TOD (99.1sec/veh). It is concluded that this new signal control algorithm suggested in this paper is more effective in controlling an oversaturated network.

Dynamic Network Loading Model based on Moving Cell Theory (Moving Cell Theory를 이용한 동적 교통망 부하 모형의 개발)

  • 김현명
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.113-130
    • /
    • 2002
  • In this paper, we developed DNL(Dynamic Network Loading) model based on Moving cell theory to analyze the dynamic characteristics of traffic flow in congested network. In this paper vehicles entered into link at same interval would construct one cell, and the cells moved according to Cell following rule. In the past researches relating to DNL model a continuous single link is separated into two sections such as running section and queuing section to describe physical queue so that various dynamic states generated in real link are only simplified by running and queuing state. However, the approach has some difficulties in simulating various dynamic flow characteristics. To overcome these problems, we present Moving cell theory which is developed by combining Car following theory and Lagrangian method mainly using for the analysis of air pollutants dispersion. In Moving cell theory platoons are represented by cells and each cell is processed by Cell following theory. This type of simulation model is firstly presented by Cremer et al(1999). However they did not develop merging and diverging model because their model was applied to basic freeway section. Moreover they set the number of vehicles which can be included in one cell in one interval so this formulation cant apply to signalized intersection in urban network. To solve these difficulties we develop new approach using Moving cell theory and simulate traffic flow dynamics continuously by movement and state transition of the cells. The developed model are played on simple network including merging and diverging section and it shows improved abilities to describe flow dynamics comparing past DNL models.