• Title/Summary/Keyword: Platinization

Search Result 3, Processing Time 0.019 seconds

The fabrication of Pt electroplating on ITO multi-electrode array in neuronal signal detection (전극의 임피던스 감소를 위해 백금 도금한 ITO 신경신호 검출용 다중 전극 제작)

  • Kwon, Gwang-Min;Choi, Joon-Ho;Lee, Kyoung-J.;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.257-259
    • /
    • 2002
  • In investigating the characteristics of a neural network, the use of planar microelectrode array shows several advantages over normal intracellular recording[1]. A transparent indium tin oxide(ITO) multi-electrode array(MEA) was fabricated and its top surface was insulated with photodefinable polyimide(HD-8001) except the exposed area for interfacing between the ITO electrodes and the neuronal cells. The exposed ITO electrodes were platinized in order to reduce the impedance between the electrodes and electrolyte. The one-minute platinization with $0.99nA/{\mu}m^2$ current density reduced the average impedance of the electrodes from $2.5M\Omega\;to\;90k\Omega$ at 1kHz in normal ringer solution. Cardiac cells were cultured on this MEA as a pilot study before neuron culture. The signals detected by the platinized electrodes had larger amplitudes and improved signal to noise ratio(SNR) compared to non-platinized electrodes. It is clear that microelectrodes need to have lower impedance to make reliable extracellular recordings, and thus platinization is essential part of MEA fabrication. Burst spike of cultured olfactory bulb was also detected with the MEA having platinized electrodes.

  • PDF

Characteristics of Ti Platinization for Fabrication Sn-modified Platinized Ti Electrode (Sn-modified Platinized Ti 전극 제조를 위한 Ti의 백금 도금 특성)

  • Kim, Kwang-Wook;Kim, Seong-Min;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.124-132
    • /
    • 2007
  • This work investigated a fabrication way of stable platinized Ti electrode and evaluated the electrochemical characteristics of the Sn-modified platinized Ti electrode in nitrate solution. A Pt electro-plating way to form some open special clearances within the Pt coating layer on etched Ti substrate was very important to remove effectively the residual contaminate due to plating solution out of the fabricated electrode surface and to maximize the actual electrode surface area contacting solution. Both boiling and electro-cleaning processes of the fabricated electrode was essential to obtain a stable platinized-Pt electrode with reproducible and stable surface property which was necessary for the correct evaluation of Sn coverage on the electrode. The electro-cleaning caused a morphology change of the platinized Ti electrode surface with some downy hair-like polyps formed during the deposition disappearing, which made the electrode stable. The Sn-modified platinized Ti electrode in this work showed the best electro-activity for nitrate reduction, when it was fabricated through the Pt electro-plating of about 30 minutes.

Disposable Glucose Sensor Based on Platinised Carbon Paste Electrode (백금 도금된 탄소반죽 전극을 이용한 일회용 글루코오스 센서)

  • Lee Dong Joo;Yoo Jae Hyun;Cui Gang;Choi Moon Hee;Kim Moon Hwan;Ryu Joon Oh;Han Sang-Hyun;Cha Geun Sig;Nam Hakhyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.227-231
    • /
    • 1999
  • Disposable, amperometric glucose sensor was constructed using platinised carbon paste electrode. The sensor response was studied by amperometry and cyclic voltammetry applying sample solutions on the strip-type electrode. Platinization of screen-printed carbon paste electrode effectively improved the electrochemical reversibility of a mediator and the analytical characteristics of the sensor. The heterogeneous rate constant for $[Fe(CN)_6]^{4-/3-}$ was $1.45\times10^{-2}cm{\cdot}s^{-1}$. An applied potential of 0.3V vs. Ag/AgCl resulted in the best selectivity for glucose. The apparent Michaelis-Menten constant for glucose on the strip sensor, $K_m^{app}$, was 24.5 mM. To evaluate the analytical performance of the glucose sensor strip, a correlation study was performed with the NOVA S.P, Ultra M analyzer for 30 serum samples containing $80\~297mg/dL$ of glucose: the correlation coefficient value was 0.983. It can be seen that the strip sensor has satisfactory precision and accuracy.