• Title/Summary/Keyword: Platform modeling

Search Result 555, Processing Time 0.024 seconds

Design of Integrated Reduction Platform for Food Contaminants Derived from the Environment through Interagency Collaboration in Korea (환경유래 식품오염물질의 범부처 통합 저감화 플랫폼 설계)

  • Ko, Ahra;Heo, Ji-Young;Kang, Young-Woon;Kang, Kil Jin;Chung, Myung-Sub;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • Objectives: Chemicals derived from various environment media contaminates food across the food supply chain. In Korea, levels of contaminants in food have been sporadically measured by monitoring programs of different government agencies. There is difficulty with data compilation and integrated analysis across media. Therefore, the aim of this study was to propose an overall integrated database and analytical platform design for the 'ECO-FOOD NET (Environmental COntaminant reduction platform for FOOD through an interagency collaboration NETwork)', a tool to support the reduction of environmental contaminants in food. Methods: We developed a new data structure and standardized protocols for the compilation of integrated data. In addition, we conducted subject-oriented logical and physical relational database modeling and created the architecture design of the platform. Results: We established a standardized code system related to exposure media and route, analysis method and food matrix. In addition, we designed the seven software modules of 'About the System', 'Introduction to Interagency Work', 'Media-Chemicals Profiles', 'Method Bank', 'Monitoring Data Base', 'Integrated Media Analysis', and 'Risk-Benefit Analysis'. Conclusions: This study will contribute to decision-making as a tool for executing risk management, such as sustainable reduction policies of contaminants in food.

Prioritizing SOC Facilities for Applying BIM/GIS Integrating Platform to Local Governments (지방자치단체에 BIM/GIS 통합 플랫폼 적용을 위한 SOC 시설물 우선순위 선정방안)

  • Youn, Jun Hee;Lee, Woo Sik;Choi, Hyun Sang;Kang, Tae Wook
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.7-14
    • /
    • 2013
  • Recently, BIM(Building Information Model) is widely applied to all stages of SOC (Social Overhead Capital)facilities life cycle from planning to maintenance. While BIM is an analysis tool focussing the inner space of facilities, GIS is principally applied to analyzing relationship between facilities. Therefore, integrating BIM and GIS, we expect to get a potential synergy effect in aspects of effective information management and various analysis for SOC facilities. This paper deals with prioritizing SOC facilities for applying BIM/GIS integrating platform to local governments. First, investigate facilities required by law, and identify SOC facilities suitable for SOC characteristics. Second, analyze the effectiveness and applicability of BIM/GIS integrating platform applying each facility. For the purpose, we quantify effectiveness and applicability in aspects of UIS management and GIS functions. Lastly, prioritize the SOC facilities applying BIM/GIS integrating platform.

Exploring Social Issues of On-demand Delivery Platform Participants (뉴스 데이터 마이닝을 통한 배달 플랫폼 참여자의 사회적 이슈 분석)

  • Park, Soo Kyung;Lee, Hyeon June;Lee, Bong Gyou
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.79-85
    • /
    • 2021
  • After COVID-19, the number of individuals participating in delivery platforms has increased. They are using the participation of the delivery platform as a means of creating a new source of income as well as a means of sports and hobbies. This phenomenon is related to a social phenomenon called 'N-jober'. However, there are still few studies examining this phenomenon. Therefore, this study intends to examine the phenomenon of individual participation in delivery platforms and their issues. Text mining was performed on news data from January 2019, when COVID-19 started. As a result, social issues related to the increase in individual participation in delivery platforms were derived into 5 topics(Introduction to the Phenomenon, Characteristics of Participants, Participant's Income and Fees, Characteristics as a Job, Concern about Potential Risks). This study has significance in that it expanded the perspective of academic discussion on delivery platform business to individual participants.

The development of training platform for CiADS using cave automatic virtual environment

  • Jin-Yang Li ;Jun-Liang Du ;Long Gu ;You-Peng Zhang;Xin Sheng ;Cong Lin ;Yongquan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2656-2661
    • /
    • 2023
  • The project of China initiative Accelerator Driven Subcritical (CiADS) system has been started to construct in southeast China's Guangdong province since 2019, which is expected to be checked and accepted in the year 2025. In order to make the students in University of Chinese Academy of Sciences (UCAS) better understand the main characteristic and the operation condition in the subcritical nuclear facility, the training platform for CiADS has been developed based on the Cave Automatic Virtual Environment (CAVE) in the Institute of Modern Physics Chinese Academy of Sciences (IMPCAS). The CAVE platform is a kind of non-head mounted virtual reality display system, which can provide the immersive experience and the alternative training platform to substitute the dangerous operation experiments with strong radioactivity. In this paper, the CAVE platform for the training scenarios in CiADS system has been presented with real-time simulation feature, where the required devices to generate the auditory and visual senses with the interactive mode have been detailed. Moreover, the three dimensional modeling database has been created for the different operation conditions, which can bring more freedom for the teachers to generate the appropriate training courses for the students. All the user-friendly features will offer a deep realistic impression to the students for the purpose of getting the required knowledge and experience without the large costs in the traditional experimental nuclear reactor.

Numerical modeling of internal waves within a coupled analysis framework and their influence on spar platforms

  • Kurup, Nishu V.;Shi, Shan;Jiang, Lei;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.261-277
    • /
    • 2015
  • Internal solitary waves occur due to density stratification and are nonlinear in nature. These waves have been observed in many parts of the world including the South China Sea, Andaman Sea and Sulu Sea. Their effect on floating systems has been an emerging field of interest and recent offshore developments in the South China Sea where several offshore oil and gas discoveries are located have confirmed adverse effects including large platform motions and riser system damage. A valid numerical model conforming to the physics of internal waves is implemented in this paper and the effect on a spar platform is studied. The physics of internal waves is modeled by the Korteweg-de Vries (KdV) equation, which has a general solution involving Jacobian elliptical functions. The effects of vertical density stratification are captured by solving the Taylor Goldstein equation. Fully coupled time domain analyses are conducted to estimate the effect of internal waves on a typical truss spar, which is configured to South China Sea development requirements and environmental conditions. The hull, moorings and risers are considered as an integrated system and the platform global motions are analyzed. The study could be useful for future guidance and development of offshore systems in the South China Sea and other areas where the internal wave phenomenon is prominent.

Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization using Genetic Algorithm

  • You, Ki-Sung;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.630-639
    • /
    • 2004
  • The Stewart platform manipulator is a closed-kinematics chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. However, this is a complex and nonlinear system, so the control performance of the system is not so good. In this paper, a new robust motion control algorithm is proposed. The algorithm uses partial state feedback for a class of nonlinear systems with modeling uncertainties and external disturbances. The major contribution is the design of a robust observer for the state and the perturbation of the Stewart platform, which is combined with a variable structure controller (VSC). The combination of controller and observer provides the robust routine called sliding mode control with sliding perturbation observe. (SMCSPO). The optimal gains of SMCSPO, which is determined by nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function that evaluates the gain optimization is to put sliding function. The control performance of the proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart platform. The results showed high accuracy and good performance.

The Role of Empathy in Crowdfunding Channel Platform

  • BAN, Juil;LEE, Han-Suk
    • Journal of Distribution Science
    • /
    • v.18 no.10
    • /
    • pp.15-23
    • /
    • 2020
  • Purpose: Crowdfunding can be a complementary channel in which start-ups or small companies can obtain financial help and take advantage of exploiting the online potential. To activate crowdfunding, it is necessary to consider a consumer's empathic responses. This article examines the role of empathy in the crowdfunding channel platform. We adopted the identification-commitment model to prove the role of empathy. Research design, data, and methodology: Participants were asked to read the charitable crowdfunding campaign. More than 300 young adults completed an online questionnaire and we analyzed it with structural equation modeling (SEM). To find out the role of empathy, we postulate several models which use empathy variable for different purposes. Results: We conclude that empathy has the role of moderator in the identification-commitment model. This means the high empathic response helped the relationship between identification and commitment. However, low empathic response can negatively influence the process of identification to commitment. Conclusions: This study found that virtual empathy is positively related to crowdfunding participation if we can elevate empathy in the crowdfunding channel platform. The findings also show that we need to consider empathic response when we want to raise funds for specific projects such as protecting the natural environment.

Trustworthy Mutual Attestation Protocol for Local True Single Sign-On System: Proof of Concept and Performance Evaluation

  • Khattak, Zubair Ahmad;Manan, Jamalul-Lail Ab;Sulaiman, Suziah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2405-2423
    • /
    • 2012
  • In a traditional Single Sign-On (SSO) scheme, the user and the Service Providers (SPs) have given their trust to the Identity Provider (IdP) or Authentication Service Provider (ASP) for the authentication and correct assertion. However, we still need a better solution for the local/native true SSO to gain user confidence, whereby the trusted entity must play the role of the ASP between distinct SPs. This technical gap has been filled by Trusted Computing (TC), where the remote attestation approach introduced by the Trusted Computing Group (TCG) is to attest whether the remote platform integrity is indeed trusted or not. In this paper, we demonstrate a Trustworthy Mutual Attestation (TMutualA) protocol as a proof of concept implementation for a local true SSO using the Integrity Measurement Architecture (IMA) with the Trusted Platform Module (TPM). In our proposed protocol, firstly, the user and SP platform integrity are checked (i.e., hardware and software integrity state verification) before allowing access to a protected resource sited at the SP and releasing a user authentication token to the SP. We evaluated the performance of the proposed TMutualA protocol, in particular, the client and server attestation time and the round trip of the mutual attestation time.

Improvement of Active Shape Model for Detecting Face Features in iOS Platform (iOS 플랫폼에서 Active Shape Model 개선을 통한 얼굴 특징 검출)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2016
  • Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.

Motion Control of Omnidirectional Mobile Platform for Path Following Using Backstepping Technique

  • Dinh, Viet-Tuan;Thinh, Doan-Phuc;Hoang, Giang;Kim, Hak-Kyeong;Oh, Sea-June;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • This paper proposes a controller design for an omnidirectional mobile platform (OMP) with three wheels using backstepping control. A kinematic model and dynamic model of the system are presented. Based on the dynamic modeling, a backstepping controller is designed to stabilize the OMP when following a desired path. The controller is designed based on a backstepping control theory. It includes two steps: first, a virtual state and a stability function are introduced. Second, Lyapunov functions for the system are chosen and an equation for the virtual control that makes the system stabile is obtained. The system stability is guaranteed by the Lyapunov stability theory. The simulation and experimental results are presented to demonstrate the effectiveness of the proposed controller.