• Title/Summary/Keyword: Platform Motion

Search Result 570, Processing Time 0.028 seconds

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Development of an Intelligent Security Robot System for Home Surveillance (가정용 지능형 경비 로봇 시스템 개발)

  • Park, Jeong-Ho;Shin, Dong-Gwan;Woo, Chun-Kyu;Kim, Hyung-Chul;Kwon, Yong-Kwan;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.

Mathieu stability of offshore Buoyant Leg Storage & Regasification Platform

  • Chandrasekaran, S.;Kiran, P.A.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.345-360
    • /
    • 2018
  • Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the severity of instability.

Motion Control of Omnidirectional Mobile Platform for Path Following Using Backstepping Technique

  • Dinh, Viet-Tuan;Thinh, Doan-Phuc;Hoang, Giang;Kim, Hak-Kyeong;Oh, Sea-June;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • This paper proposes a controller design for an omnidirectional mobile platform (OMP) with three wheels using backstepping control. A kinematic model and dynamic model of the system are presented. Based on the dynamic modeling, a backstepping controller is designed to stabilize the OMP when following a desired path. The controller is designed based on a backstepping control theory. It includes two steps: first, a virtual state and a stability function are introduced. Second, Lyapunov functions for the system are chosen and an equation for the virtual control that makes the system stabile is obtained. The system stability is guaranteed by the Lyapunov stability theory. The simulation and experimental results are presented to demonstrate the effectiveness of the proposed controller.

Fatigue Design of Mooring Lines of Floating Type Combined Renewable Energy Platforms

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • This paper presents the concept design procedure of a floating-type combined renewable energy platform based on hydrodynamic analyses and is focused on the fatigue design of taut-type mooring lines of the platform. Two types of combined renewable energy platforms are considered: a combination of wind turbine, wave turbine and photovoltaic energy plant and a combination of wind turbine, current turbine and photovoltaic energy plant. The basic configurations are conceptually determined from the understanding of floating offshore plants, while the main dimensions have been determined based on a hydrostatic calculation. Fully coupled hydrodynamic analyses have been carried out to identify the motion characteristics of the floating body and the tension histories of the mooring lines. The tension history is used for the fatigue life prediction based on the rain-flow cycle counting method. For the fatigue life prediction, tension life curves from API and the Palmgren-Miner rule are employed.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

Simulation and Experimental Study of A TLP Type Floating Wind Turbine with Spoke Platform

  • Kim, Hyuncheol;Kim, Imgyu;Kim, Yong Yook;Youn, DongHyup;Han, Soonhung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.179-191
    • /
    • 2016
  • As the demand for renewable energy has increased following the worldwide agreement to act against global climate change and disaster, large-scale floating offshore wind systems have become a more viable solution. However, the cost of the whole system is still too high for practical realization. To make the cost of a floating wind system be more economical, a new concept of tension leg platform (TLP) type ocean floating wind system has been developed. To verify the performance of a 5-MW TLP type ocean floating wind power system designed by the Korea Advanced Institute of Science and Technology, the FAST simulation developed by the National Renewable Energy Laboratory is used. Further, 1/50 scale model tests have been carried out in the ocean engineering tank of the Research Institute of Medium and Small Shipbuilding, Korea. This paper compares the simulation and ocean engineering tank test results on motion prediction and tension assessment of the TLP anchor.

Exercise Recognition using Accelerometer Based Body-Attached Platform (가속도 센서 기반의 신체 부착형 플랫폼을 이용한 운동 인식)

  • Kim, Joo-Hyung;Lee, Jeong-Eom;Park, Yong-Chan;Kim, Dae-Hwan;Park, Gwi-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2275-2280
    • /
    • 2009
  • u-Healthcare service is one of attractive applications in ubiquitous environment. In this paper, we propose a method to recognize exercises using a new accelerometer based body-attached platform for supporting u-Healthcare service. The platform consists of a device for measuring accelerometer data and a device for receiving the data. The former measures a user's motion data using a 3-axis accelerometer. The latter transmits the accelerometer data to a computer for recognizing the user's exercise. The algorithm for exercise recognition classifies the type of exercise using principle components analysis(PCA) from the accelerometer data transformed by discrete fourier transform(DFT), and estimates the repetition count of the recognized exercise using a peak detection algorithm. We evaluate the performance of the algorithm from the accuracy of the recognition of exercise type and the error rate of the estimation of repetition count. In our experimental result, the algorithm shows the accuracy about 98%.

Cross-covariance 3D Coordinate Estimation Method for Virtual Space Movement Platform (가상공간 이동플랫폼을 위한 교차 공분산 3D 좌표 추정 방법)

  • Jung, HaHyoung;Park, Jinha;Kim, Min Kyoung;Chang, Min Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.41-48
    • /
    • 2020
  • Recently, as the demand for the mobile platform market in the virtual/augmented/mixed reality field is increasing, experiential content that gives users a real-world felt through a virtual environment is drawing attention. In this paper, as a method of tracking a tracker for user location estimation in a virtual space movement platform for motion capture of trainees, we present a method of estimating 3D coordinates of the 3D cross covariance through the coordinates of the markers projected on the image. In addition, the validity of the proposed algorithm is verified through rigid body tracking experiments.

Tracking Control using Weight Center Movement (중심이동을 이용한 추적제어에 관한 연구)

  • Sin, Seung-Heon;Lee, Yong-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.47-61
    • /
    • 2000
  • To study the characteristic of the weight center control of humans, the tracking control capability of circular and wave motion by weight center movement was conducted by using the force platform. The control performance(the integrated value of the $|Object\;value(X)-Control\;Value(Y)|^{2}$) and control trace record was used to evaluate the individual performance characteristics. The size of the population for this study was 73, which consisted of engineering students, students majoring in taekwondo, students majoring in dance, all of which were in their twenties, and also people in their sixties. The results of this study indicate that the weight center control characteristics of humans can be represented by the evaluation method and values. People who were capable of tracking the object did not stop nor overshot the objective. In addition, habits or training characteristics and aging seemed to influence the performance of the subjects. In the future, development of different objectives for weight center control could be used to determine the severity of the disease of the subject and the effects of the treatment.

  • PDF