• Title/Summary/Keyword: Platform Construction System

Search Result 285, Processing Time 0.029 seconds

Research on the process and the provision of the japanese Wooden House (일본 목조주택의 형성과정과 공급실태에 관한 연구)

  • Ahn, Kug-Jin
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2011
  • This research explores about the construction process and provision of Japanese Wooden Houses. Even though Prefabricated Houses appeared during the 1960's and the Platform Construction System during the 1970's, there was still a high demand for Conventional Wooden House, with a high demand by households on their 30's. These features were found in the areas of Hokkaido, Kyushu, Tokyo, and Osaka. Tokyo and capital region accommodate large number of the head offices of companies that produce Platform Construction System houses, and thus supply the largest amount of Platform Construction System houses. In capital region, land prices are so high, that they build houses as 3-Floors or above, and also driven by high cost of house construction, house performances are excellent. The houses of Osaka and Kinki region demonstrate similar characteristics to those of capital region. Osaka is headquartered by a group of head offices of companies that produce prefabricated houses, and thus holds more amount of prefabricated house supply than other regions. This city also shows high cost of house construction no less than capital region, and thus offers outstanding performance of house. In Kyushu, whereas Japanese wooden house building systems are supplied the most, Platform Construction System houses are provided the least in the nation. As this region offers rich amount of forest resources owing to mild humid climate which is ideal for vegetations, the Japanese wooden building systems use the timbers from this region. Hokkaido, a cold region, requires houses that offer outstanding performance of heat insulation. Therefore, Hokkaido shows more supplies of Platform Construction System houses that offers outstanding heat insulation performance. They import the timbers that form the structure framework of Platform Construction System houses from North America.

3D Ground Terrain Processing Platform for Automated Excavation System

  • Kim, Seok;Kim, Tae-yeong;Park, Jae-Woo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.669-670
    • /
    • 2015
  • Efficient management of the construction heavy equipment is required to reduce the rate of carbon emissions and on-site accidents. The intelligent excavation system (IES) will improve the construction quality and productivity through information technologies and efficient equipment operation, especially in large earthwork projects. Three-dimensional digitized ground data should be required for identifying the path of heavy equipment and work-site environment. Rapid development of terrain laser scanners (TLS) is more readily to acquire the digital data. This study suggests the '3D ground terrain processing platform (3DGTPP)' including data manipulating module and analyzing module of the scanned data for intelligent earthmoving equipment operation. The processing platform consists of six modules, including scanning, registering, manipulating, analyzing, transmitting, and storing. 3D ground terrain processing platform presented in this study will provide fundamental information for intelligent excavation system (IES), which will increase the efficiency of earthworks and safety of workers in significant.

  • PDF

MONITORING CONSTRUCTION PROCESSES: A SOLUTION USING WIRELESS TECHNOLOGY AND ONLINE COLLABORATIVE ENVIRONMENT

  • Sze-wing Leung;Stephen Mak;Bill L.P. Lee
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.50-60
    • /
    • 2007
  • The endeavor of this paper focuses on designing a monitoring system to provide a cost-effective solution on quality assurance for construction projects. The construction site monitoring system integrates a long-range wireless network, network cameras, and a web-based collaborative platform. The users of the system could obtain the most updated status of construction sites, such as behaviors of workers, project progress, and site events anywhere with Internet connectivity. It was carefully configured in order to maintain the reliability under the reactive conditions of the construction sites. This paper reports the architecture of the monitoring system and reviews the related technologies. The system has been implemented and tested on a construction site and promising results were obtained.

  • PDF

A Study on the Construction Plan of Machinery Public Platform through the Survey of the Construction Machinery Rental Market

  • Chang Wook Kim;Myeong Jin Jeong;Hyo Bae Lee;Jong Kwan Ho;Myeong Gu Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.311-325
    • /
    • 2023
  • In the construction machinery rental market, there are frequent cases of sublease through large-scale rental companies or rental through mediation organizations without legal grounds. In addition, institutional improvement of the construction machine safety management system has been required due to concerns over the internalization of legal inspections due to the lack of type approval data and construction machine history management during the construction machine inspection process. The government is responsible for securing safety of construction machinery and promoting mechanization of construction machinery by efficiently managing the construction machinery market by setting safety management such as type approval, registration, and inspection of construction machinery. In order to efficiently implement this, it is required to establish a platform for renting construction machinery and collecting safety management information. We presented a plan to build a public platform for construction machinery to secure the soundness of the construction machinery rental market and to improve safety management.

Citic Tower Construction Key Technology

  • Xu, Lishan
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.185-192
    • /
    • 2019
  • Citic Tower is the first over-500 m-tall super highrise building in the world, located in the high seismic intensity area with paek ground acceleration over 0.2g in 475 years. This project is unique in its complexity, large volume, and challenging site conditions (zero site for construction). The traditional techniques can hardly meet safty, quality and schedule requirements of the construction. This article introduces the key construction technologies that are innovatively developed and applied in Citic Tower project construction, including intelligent super-high-rise building integrated construction platform system, independently developed by the CCTEB; Jump-Lift Elevator, which is the first of the kind with service height over 500 meters; combined temporary-and-permanent fire protection systems. The BIM technology is also applied in this project. Through technical innovation, and utilization of technologies, construction speed and safety had been greatly improved.

Building a Big Data Platform Using Real-time Wearable Devices and Cases of Safety Accidents in KOREA

  • LEE, Ki Seok;CHOI, Youngjin;LEE, Kyung-cheun;SHIN, Yoonseok;YOO, Wi Sung
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.375-381
    • /
    • 2022
  • Safety accidents are of concern during construction projects, even given the recent innovations in digital technologies. These projects remain focused on overcoming specific and limited applications on construction sites. For this reason, the development of an inclusive safety management system has become crucial. This study aims to build a Big Data platform to inform decisions on how to proactively eliminate worker hazards on construction sites. The platform consists of about 100,000 real records and a real-time monitored database featuring various safety indices, such as workers' altitudes, heart rates, and fatigability during construction, which are determined through various wearable devices. The data types are customized and integrated by a research team in accordance with the characteristics of a specific project using hypertext transfer protocol (HTTP). The results can be helpful as efficient tools to ensure successful safety management in complex construction situations. This study is expected to provide three significant contributions to the field, including real-time fatigability analysis and tracking of workers on-site; providing early GPS-based warnings to workers who might be accessing dangerous spaces or places; and monitoring the workers' health indices, based on details from 100,000 cases.

  • PDF

Derivation of BIM/GIS Platform Application Scenarios and Definition of Specific Functions in Construction Planning and Design (건설 기획 및 설계 단계 BIM/GIS 통합 플랫폼 활용을 위한 시나리오 도출 및 상세기능 정의)

  • Youn, Junhee;Kang, Tae-Wook;Choi, Hyun-Sang;Kim, Changyoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7340-7349
    • /
    • 2014
  • BIM (Building Information Model) and GIS (Geographic Information System) are applied widely to all stages (Planning - Design - Building - Maintenance) of construction. Recently, research for designing an integrated BIM/GIS platform has been conducted to determine the synergy effects. This paper reports the derivation of BIM/GIS platform application scenarios and definition of specific functions in construction planning and design phases. First, BIM/GIS application scenarios and platform functions are derived for each phase based on an analysis of business affairs. Second, SW functions, which compose platform function, are defined. In the construction planning phase, location selection and route location business affairs were analyzed. Preliminary design and detailed design business affairs were analyzed in the construction design phase. The result of this research can be used for BIM/GIS integrated platform design in the future.

Development of 3D Terrain Processing Platform Using Terrestrial Laser Scanning Data (지상레이저스캐닝 데이터를 활용한 3차원 지반지형 분석 플랫폼 개발)

  • Kim, Seok;Kim, Tae-Yeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.227-228
    • /
    • 2016
  • Terrestrial laser scanning (TLS) technology is being applied to various fields such as the soil volume calculation and the displacement measurement of terrain, tunnels and dams. This study develops a 3D terrain processing platform for automated earth work using a terrestrial laser scanning data as the software prototype. The developed software provides cells with geo-technical information for planning work to an integrated system.

  • PDF

A Study on Construction of Platform Using Spectrum Big Data (전파 빅데이터 활용을 위한 플랫폼 구축방안 연구)

  • Kim, Hyoung Ju;Ra, Jong Hei;Jeon, Woong Ryul;Kim, Pankoo
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.99-109
    • /
    • 2020
  • This paper proposes a platform construction plan for the use of spectrum big data, collects and analyzes the big data in the radio wave field, establishes a linkage plan, and presents a support system scheme for linking and using the spectrum and public sector big data. It presented a plan to build a big data platform in connection with the spectrum public sector. In a situation where there is a lack of a support system for systematic analysis and utilization of big data in the field of radio waves, by establishing a platform construction plan for the use of big data by radio-related industries, the preemptive response to realize the 4th Industrial Revolution and the status and state of the domestic radio field. The company intends to contribute to enhancing the convenience of users of the big data platform in the public sector by securing the innovation growth engine of the company and contributing to the fair competition of the radio wave industry and the improvement of service quality. In addition, it intends to contribute to raising the social awareness of the value of spectrum management data utilization and establishing a collaboration system that uses spectrum big data through joint use of the platform.

Decision of Optimal Platform Location Considering Work Efficiency -Optimization by Excavator Specification- (작업의 효율성을 고려한 최적 플랫폼 위치 선정 방안 -굴삭기 제원에 따른 최적화-)

  • Lee, Seung-Soo;Park, Jin-Woong;Seo, Jong-Won;Kim, Sung-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.790-793
    • /
    • 2008
  • Recently, Intelligent Excavating System(IES) for earthwork automation is on progress since the end of 2006 as a part of construction technology innovation projects in Ministry of Land, Transport and Maritime Affairs. Task Planning System(TPS), one of the detail core technologies of IES, is an optimal work planning system in conditions of effectiveness, safety and economic efficiency by analyzing the work environment data based on earthwork design and work environment recognition technology. For effective earthwork planning, the location of platform must be the most optimal spot for minimization of time, maximization of productivity and reduction of overlapped work spaces and unnecessariness. Besides, the decision of optimal platform location is to be based on the specifications and then is able to be converted with the local area calculation algorithm. This study explains the decision of optimal platform location on the basis of local area from the work space separate process and judges the effectiveness.

  • PDF