• 제목/요약/키워드: Plate thickness

검색결과 2,292건 처리시간 0.037초

하부 실리콘 플레이트의 두께에 따른 FCP 표면 오차에 관한 연구 (A Study on the FCP Surface Error according to the Thickness of the Lower Silicone Plate)

  • 김지혜;정경태;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.31-32
    • /
    • 2023
  • Recently, with the digitalization of the construction industry, free-form building construction technology is developing. However, the technology for manufacturing free-form concrete panels is still insufficient. In this study, the surface error of the FCP according to the thickness of the lower silicon plate, which is a component of the existing lower multi-point press, was analyzed in order to manufacture a precise FCP. As a result of the analysis, it was found that the thinner the thickness, the larger the error value. These results can be used as a basis for existing research and are expected to be used for research on high-quality FCP manufacturing technology.

  • PDF

충돌벽 노즐의 저속 제트에 의한 액막 특성 연구 (A Study on the Characteristics of the Liquid Sheet Formed by a Splash Plate Nozzle at Low Jet Velocities)

  • 박희웅;김지담;송가은;강보선
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, the thickness of the liquid sheet formed by a splash plate nozzle at low jet velocities was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions for two impinging jets showed some differences from the measurement results.

A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position

  • Merazi, M.;Hadji, L.;Daouadji, T.H.;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.305-321
    • /
    • 2015
  • In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

무소음무진동 보보강공법 개발에 관한 연구(1) (Development of Retrofit Method for Beam Using Steel Plate Reinforced by Fiber Sheet (1))

  • 김우재;최종문;박상태;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.781-784
    • /
    • 2004
  • Method of Steel plate reinforced by fiber sheet is advantageous in the secure loading facility. For this method are a light weight and a high strength, the thickness of steel can be reduced Effects of composite system are depreciated when the thickness of steel is thin. This is the result of the difference of ductility ratio with steel plate. Steel plate reinforced by fiber sheets confirms the ability of transformation. This is the result of the property of steel materials Steel plate reinforced by fiber sheet didn't display an enough performance when theadhesives are epoxy rosin. This is the result of the slide of the surface of stee1. The adhesive ability is varied by the number and span of anchor bolts. There wasn't happening the separation between steel and epoxy. Thus the method used in combination with anchor and epoxy is best excellent. This is the result of the upward of accumulation effects Shearing force is in proportion to the number of bolts. But the ability of shearing force per one bolt is reducing. Thickness of steel plate reinforced by fiber sheet must be designed so that steel is endure before concrete is wreck.

  • PDF

Static and dynamic behavior of FGM plate using a new first shear deformation plate theory

  • Hadji, Lazreg;Meziane, M. Ait Amar;Abdelhak, Z.;Daouadji, T. Hassaine;Bedia, E.A Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.127-140
    • /
    • 2016
  • In this paper, a new first shear deformation plate theory based on neutral surface position is developed for the static and the free vibration analysis of functionally graded plates (FGPs). Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher order shear deformation theories. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present shear deformation plate theory and the neutral surface concept, the governing equations are derived from the principle of Hamilton. There is no stretching-bending coupling effect in the neutral surface based formulation. Numerical illustrations concern flexural and dynamic behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)

  • Belkhodja, Y.;Ouinas, D.;Fekirini, H.;Olay, J.A. Vina;Achour, B.;Touahmia, M.;Boukendakdji, M.
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.395-420
    • /
    • 2022
  • A new hybrid quasi-3D and 2D high-order shear deformation theory is studied in this mathematical formulation, for an investigation of the bending, free vibrations and buckling influences on a functionally graded material plate. The theoretical formulation has been begun by a displacement field of five unknowns, governing the transverse displacement across the thickness of the plate by bending, shearing and stretching. The transverse shear deformation effect has been taken into consideration, satisfying the stress-free boundary conditions, especially on plate free surfaces as parabolic variation through its thickness. Thus, the mechanical properties of the functionally graded plate vary across the plate thickness, following three distributions forms: the power law, exponential form and the Mori-Tanaka scheme. The mechanical properties are used to develop the equations of motion, obtained from the Hamilton principle, and solved by applying the Navier-type solution for simply supported boundary conditions. The results obtained are compared with other solutions of 2D, 3D and quasi-3D plate theories have been found in the literature.

Si-nanoplate Transistors for Flexible Electronics

  • Kim, Mincheol;Han, Jungkyu
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.292-293
    • /
    • 2013
  • Sub 10-nm thick of Si plate is simulated with the software for Nanowire Field Effect Transistor (FET) device simulation. With usual single crystal Si technology, it is difficult to realize flexible electronic devices. Here, we suggest a FET device based on thinned Si layer. The simulation implied a practical limitation of the Si plate thickness for flexible devices as 2 nm. With around this thickness, Si plate may have much flexibility than existing bulk MOSFETs.

  • PDF

선박 이중판의 보강법 연구 (A Study on the Reinforced Method of Doubler Plate in Ship Hull Structure)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.39-47
    • /
    • 2003
  • A study of the structural strength evaluation on the doubler plate, considering various load cases that were subjected to in-plane and out of plane combined load, has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate for various load cases, elasto-plastic large deflection analysis is introduced, including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed, based on the results. In order to compare the doubler structure with the original strength of main plate, without doubler, simple formulas for the evaluation of the equivalent flat plate thickness are derived for each load case, respectively, based on the additional series of analysis of flat plate structure. Using these derived equations, the thickness change of an equivalent flat plate is analyzed according to the variation of various design parameters of doubler platesome design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas are discovered, and these relations are formulated for the future development of simple strength evaluation formula of general doubler plate structure.

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.