• Title/Summary/Keyword: Plate theory

Search Result 1,436, Processing Time 0.02 seconds

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

On vibration and flutter of shear and normal deformable functionally graded reinforced composite plates

  • Abdollahi, Mahdieh;Saidi, Ali Reza;Bahaadini, Reza
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.437-452
    • /
    • 2022
  • For the first time, the higher-order shear and normal deformable plate theory (HOSNDPT) is used for the vibration and flutter analyses of the multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) plates under supersonic airflow. For modeling the supersonic airflow, the linear piston theory is adopted. In HOSNDPT, Legendre polynomials are used to approximate the components of the displacement field in the thickness direction. So, all stress and strain components are encountered. Either uniform or three kinds of non-uniform distribution of graphene platelets (GPLs) into polymer matrix are considered. The Young modulus of the FG-GPLRC plate is estimated by the modified Halpin-Tsai model, while the Poisson ratio and mass density are determined by the rule of mixtures. The Hamilton's principle is used to obtain the governing equations of motion and the associated boundary conditions of the plate. For solving the plate's equations of motion, the Galerkin approach is applied. A comparison for the natural frequencies obtained based on the present investigation and those of three-dimensional elasticity theory shows a very good agreement. The flutter boundaries for FG-GPLRC plates based on HOSNDPT are described and the effects of GPL distribution patterns, the geometrical parameters and the weight fraction of GPLs on the flutter frequencies and flutter aerodynamic pressure of the plate are studied in detail. The obtained results show that by increasing 0.5% of GPLs into polymer matrix, the flutter aerodynamic pressure increases approximately 117%, 145%, 166% and 196% for FG-O, FG-A, UD and FG-X distribution patterns, respectively.

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

On the theory of curved anisotropic plate

  • Chiang, Yih-Cherng
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.741-759
    • /
    • 2006
  • A general theory which describes the elastic response of a curved anisotropic plate subjected to stretching and bending will be developed by considering the nonlinear effect that reflecting the non-flat geometry of the structure. By applying a newly derived $6{\times}6$ matrix constitutive relation between force resultants, moment resultants, mid-plane strains and deformed curvatures, the governing differential equations for a curved anisotropic plate is developed in the usual manner, namely, by consideration of the constitutive relation and equilibrium equations. Solutions are obtained for simply-supported boundary conditions and compared to corresponding solutions that neglecting the nonlinear effect in the analysis. The comparisons indicate that the nonlinear terms in the equations that caused by the curvature of the structure is crucial for the curved plate analysis. Under certain curved plate geometries the unreasonable results will be induced by neglecting the nonlinear effect in the analysis.

New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.485-502
    • /
    • 2009
  • A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.

Elasticity solutions for a uniformly loaded annular plate of functionally graded materials

  • Yang, B.;Ding, H.J.;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.501-512
    • /
    • 2008
  • The axisymmetric problem of a functionally graded annular plate is considered by extending the theory of functionally graded materials plates suggested by Mian and Spencer (1998). In particular, their expansion formula for displacements is adopted and the hypothesis that the material parameters can vary along the thickness direction in an arbitrary continuous fashion is retained. However, their analysis is extended here in two aspects. First, the material is assumed to be transversely isotropic, rather than isotropic. Second, the plate is no longer tractions-free on the top and bottom surfaces, but subject to uniform loads applied on the surfaces. The elasticity solutions are given for a uniformly loaded annular plate of functionally graded materials for a total of six different boundary conditions. Numerical results are given for a simply supported functionally graded annular plate, and good agreement with those by the classical plate theory is obtained.

Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories

  • Javani, Rasool;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.419-426
    • /
    • 2019
  • In this paper, buckling analyses of composite plate reinforced by Graphen platelate (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite plate. The nano composite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results showed that with increasing GPLs volume percent, the buckling load increases.

Numerical investigation on dynamic characteristics of sandwich plates under periodic and thermal loads

  • Mouayed H.Z., Al-Toki;Wael Najm, Abdullah;RidhaA., Ahmed;Nadhim M., Faleh;Raad M., Fenjan
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.831-837
    • /
    • 2022
  • Numerical investigation on dynamic characteristics of sandwich plates under periodic and thermal loads has been presented by assuming that the plate has three layers which are a foam core and two skins. The foam core made of Aluminum has porosities with uniform and graded dispersions. The sandwich plate has been supposed to be affected by periodical compressive loads. Also, temperature variation causes uniform thermal load. The formulation has been established based upon a higher-order plate theory and Ritz method has been used to solve the equations of motion. The stability boundaries have also been obtained performing Bolotin's method. It will be indicated that stability boundaries of the sandwich plate depend on periodical load parameters, porosities, skin thickness and temperature.

Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory

  • Zhou, Linyun;Najjari, Yasaman
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.725-734
    • /
    • 2022
  • In this paper, buckling analyses of nanocomposite plate reinforced by Graphen platelet (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nanocomposite plate. The nanocomposite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing relations of strains-displacements and stress-strain, the energy equations of the plate are obtained and using Hamilton's principle, the governing equations are derived. The governing equations are solved based on analytical solution. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results show that with increasing GPLs volume percent, the buckling load increases. In addition, elastic medium can enhance the values of buckling load significantly.