• Title/Summary/Keyword: Plate pitch

Search Result 130, Processing Time 0.021 seconds

A Method to Reduce Flow Depth of a Plate Heat Exchanger without a Loss of Heat Transfer Performance (판형 열교환기의 열전달성능 손실 없이 유동방향 길이를 축소하는 방법)

  • Song Gwi-Eun;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2006
  • Optimal design of an air-to-liquid finned plate heat exchanger is considered theoretically in this study. Based on existing correlations for the pressure loss and the heat transfer in channel flows, the optimal configuration of the plate heat exchanger including the optimal plate pitch and the optimal fin pitch is obtained to maximize the heat transfer within the limit of the pressure drop for a given flow depth of the plate heat exchanger. It is found that the optimal fin pitch is about one ninth of the optimal plate pitch. In the optimal configuration, the flow and thermal condition in the channels is just at the boundary between the laminar developing and laminar fully developed states. It is also found when reducing the flow depth of plate heat exchangers for compactness, the heat transfer performance can be maintained exactly the same if the geometric parameters such as the plate thickness, plate pitch, fin thickness, and fin pitch are reduced proportional to the square root of the flow depth as long as the flow keeps laminar within the heat exchangers.

Effects of Plate Pitch and Chevron Angle in a Plate Heat Exchanger on Thermal Energy Performance (판형 열교환기의 피치 및 세브론각이 열에너지 성능에 미치는 영향)

  • Kang, Byung Ha;Han, Sang Kyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.194-200
    • /
    • 2004
  • Thermal energy performance of a brazed plate heat exchanger has been evaluated experimentally. The effects of plate pitch as well as chevron angle of a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in the wide range as mass flow rates in detail. This problem is of particular interest in the design of a plate heat exchanger. The results obtained indicate that both heat transfer rate and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer rate is increased with a decrease in the plate pitch while the heat transfer is decreased with a decrease in the chevron angle. Friction factor correlations are suggested based on the measured pressure drop and effectiveness of plate heat exchangers are also compared.

A Numerical Analysis Study on Plate Heat Exchanger Heat Transfer Characteristic by Corrugation Angle and Pitch (주름 각도와 피치에 따른 판형 열교환기 전열특성에 관한 수치해석 연구)

  • Kang, Dae-Ki;Kim, Si-Pom;Hwang, Il-Ju;Lee, Jae-Hoon;Do, Tae-Wan;Yeo, Woon-Yeop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.154-159
    • /
    • 2012
  • For numerical analysis of the plate heat exchanger, a lot of time are required in modeling work and calculation. Whereas, this paper was purposed to identify characteristic of the plate heat exchanger through simplification of modeling by interpreting the numerical analysis proximity with the actual model. This study was also examined temperature difference between inlet side and outlet side, inner pressure drop, heat transfer area of plate and change of heat transfer coefficient on the plate depending on the inner corrugation angle and corrugation pitch of a herring bon pattern of the plate heat exchanger among chevron types of the plate exchanger.

The Effect of Damping Plate on Mathieu-type Instability of Spar Platform (스파 플랫폼의 Mathieu형 불안정성에 미치는 감쇠판의 영향)

  • Rho, Jun-Bumn;Choi, Hang-Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.124-128
    • /
    • 2005
  • This paper describes motion stability of a spar platform with and without a damping plate in regular waves. The heave and pitch motion equation is derived in terms of Mathieu equation and the stability diagram is obtained. It is shown that the spar platform with damping plate has smaller unstable region than that without damping plate in the stability diagram. Model tests are carried out to verify the mathematical analysis. Under the condition that the pitch natural period is approximately double the heave natural period and the heave motion is amplified at heave resonance, unstable pitch motions are evoked. However the unstable motion is stabilized in cases of spar platform with damping plate. Therefore the damping plate is an effective device to stabilize the motion of spar platform.

Heat Transfer Characteristics of Flat Plate Finned-Tube Heat Exchangers with a Variation of Fin Pitch and Number of Tube Row (핀-튜브 열교환기의 핀피치 및 열수 변화에 따른 열전달 성능특성에 관한 연구)

  • Kim Yong-Han;Lee Ho-Seong;Kim Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.930-937
    • /
    • 2005
  • The objective of this study is to investigate the heat transfer performance of flat plate finned-tube heat exchangers with large fin pitch. In this study, twenty-two heat exchangers were tested with a variation of fin pitch, number of tube row, and tube alignment. The heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row. The staggered tube alignment improved heat transfer performance more than $10\%$ compared to the inline tube alignment. A heat transfer correlation was developed from the measured data for flat plate finned-tubes with large fin pitch. The correlation yielded good predictions of the measured data with mean deviations of $3.6\%\;and\;6.4\%$ for the inline and staggered tube alignment, respectively.

Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger (유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향)

  • Han Sang Kyu;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

Effect of Fin Pitch on Air Side Heat Transfer in Louvered-Fin Heat Exchanger (루우버핀 열교환기의 핀피치가 공기측 열전달에 미치는 영향)

  • Jang, B.J.;Kim, S.J.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2000
  • In order to study on influence of fin pitch and shape of heat exchanger on the elevation of heat transfer efficiency, we make models of louvered fin type heat exchanger which was given a transformation of fin pitch in louvered fin type heat exchanger which are of en used now. And the influence of fin pitch on pressure drop and characteristics of heat transfer was experimented and analysed when air velocity and fin pitch was a variable. The results of experiment shows below. Pressure drop shows larger in louvered fin type heat exchanger than in plate fin type heat exchanger, size of pressure drop shows like this order that fin space is 4mm, 5mm, 6mm. Mean heat transfer coefficient shows higher in louvered fin type heat exchanger than in plate fin type heat exchanger, size of mean heat transfer coefficient by fin space shows same in both case in louvered fin type heat exchanger and plate fin type like this order that fin space is 4mm, 5mm, 6mm.

  • PDF

EFFECT OF STAINLESS STEEL PLATE POSITION ON NEUTRON MULTIPLICATION FACTOR IN SPENT FUEL STORAGE RACKS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The neutron multiplication factor in spent fuel storage racks, in which a stainless steel plate encloses a fuel assembly, was evaluated according to the variation of distance between the fuel assembly and stainless steel plate, as well as the pitch. The stainless steel plate position with the lowest multiplication factor on each pitch consistently appeared as 6mm or 9mm away from the outmost surface of the fuel assembly. Because the stainless steel plate has a thermal neutron absorption cross section, its ability to absorb neutrons can work best only if it is installed at the position where thermal neutrons can be gathered most easily. Therefore, the stainless steel plate position should not be too close or too far away from the fuel assembly, but it should be kept a pertinent distance from the fuel assembly.

Study on Heat Transfer Characteristics of Discrete Fin-and-tube Heat Exchangers (독립 핀-튜브 열교환기의 열전달 성능특성에 관한 연구)

  • Lee, Ho-Seong;Kim, Yong-Han;Choi, Jong-Min;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.274-280
    • /
    • 2005
  • The objective of this study Is to investigate the heat transfer performance of plate discrete fin-and-tube heat exchangers with large fin pitch. In this study, twenty-two heat exchangers were tested with a variation of fin pitch, number of tube row, longitudinal tube pitch and fin alignment. Discrete fin type exchangers improved heat transfer performance more than 10% compared to tile continuous fin type heat exchangers. The air-side heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row, The staggered fin alignment improved heat transfer performance more than 6% compared to the inline fin alignment. The effect of longitudinal tube pitch was insignificant on the j-factor and experiments found opposite effects on the j-factor with respect to fin alignment. Heat transfer correlations were developed from the measured data for flat plate discrete fin-and-tube heat exchangers with large fin pitch. The correlations yielded good predictions of the measured data with mean deviations of 1,4% and 0.3% for tire inline and staggered tube alignment, respectively.

  • PDF

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.