• Title/Summary/Keyword: Plate load tests

Search Result 284, Processing Time 0.029 seconds

Tests on composite slabs and evaluation of relevant Eurocode 4 provisions

  • Salonikios, Thomas N.;Sextos, Anastasios G.;Kappos, Andreas J.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.571-586
    • /
    • 2012
  • The paper addresses some key issues related to the design of composite slabs with cold-formed profiled steel sheets. An experimental programme is first presented, involving six composite slab specimens tested with a view to evaluating Eurocode 4 (EC4) provisions on testing of composite slabs. In four specimens, the EC4-prescribed 5000 load cycles were applied using different load ranges resulting from alternative interpretations of the reference load $W_t$. Although the rationale of the application of cyclic loading is to induce loss of chemical bond between the concrete plate and the steel sheet, no such loss was noted in the tests for either interpretation of the range of load cycles. Using the recorded response of the specimens the values of factors m and k (related to interface shear transfer in the composite slab) were determined for the specific steel sheet used in the tests, on the basis of three alternative interpretations of the related EC4 provisions. The test results confirmed the need for a more unambiguous description of the m-k test and its interpretation in a future edition of the Code, as well as for an increase in the load amplitude range to be used in the cyclic loading tests, to make sure that the intended loss of bond between the concrete slab and the steel sheet is actually reached. The study also included the development of a special-purpose software that facilitates design of composite slabs; a parametric investigation of the importance of m-k values in slab design is presented in the last part of the paper.

Local buckling and shift of effective centroid of cold-formed steel columns

  • Young, Ben
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.235-246
    • /
    • 2005
  • Local buckling is a major consideration in the design of thin-walled cold-formed steel sections. The main effect of local buckling in plate elements under longitudinal compressive stresses is to cause a redistribution of the stresses in which the greatest portion of the load is carried near the supporting edges of the plate junctions. The redistribution produces increased stresses near the plate junctions and high bending stresses as a result of plate flexure, leading to ultimate loads below the squash load of the section. In singly symmetric cross-sections, the redistribution of longitudinal stress caused by local buckling also produces a shift of the line of action of internal force (shift of effective centroid). The fundamentally different effects of local buckling on the behaviour of pin-ended and fixed-ended singly symmetric columns lead to inconsistencies in traditional design approaches. The paper describes local buckling and shift of effective centroid of thin-walled cold-formed steel channel columns. Tests of channel columns have been described. The experimental local buckling loads were compared with the theoretical local buckling loads obtained using an elastic finite strip buckling analysis. The shift of the effective centroid was also compared with the shift predicted using the Australian/New Zealand and American specifications for cold-formed steel structures.

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

Behavior of Shear Yielding Thin Steel Plate Wall with Tib (리브로 보강한 전단 항복형 강판벽의 거동)

  • Yun, Myung Ho;Wi, Ji Eun;Lee, Myung Ho;Oh, Sang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.503-511
    • /
    • 2001
  • Structures are designed against earthquakes and reinforced concrete shear walls or steel bracings are usually used as aseismic resistant element. However their hysteretic characteristics in plastic region ductility and capacity of energy absorption are not always good. Besides their stiffness is so rigid that structure designed by static analysis is occasionally disadvantageous. when dynamically analized. Generally a steel plate subjected to shear force has a good deformation capacity Also it has been considered to retain comparative shear strength and stiffness Steel shear wall can be used as lateral load resistant element for seismic design. However there was little knowledge concerning shear force-deformation characteristics of steel plates up to their collapse state In this study a series of shear loading tests of steel plate collapse state. In this study a series of shear loading tests of steel plate surrounded by vertical and horizontal ribs were conducted with the parameters of D/H ratios rib type and the loading patterns. The test result is discussed and analyzed to obtain several restoring characteristics. that is shear force-deformation stiffness and yield strength etc.

  • PDF

Experimental study on standard and innovative bolted end-plate beam-to-beam joints under bending

  • Katula, Levente;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1423-1450
    • /
    • 2015
  • The paper presents the details and results of an experimental study on bolted end-plate joints of industrial type steel building frames. The investigated joints are commonly used in Lindab-Astron industrial buildings and are optimized for manufacturing, erection and durability. The aim of the research was to provide an experimental background for the design model development by studying load-bearing capacity of joints, bolt force distribution, and end-plate deformations. Because of the special joint details, (i.e., joints with four bolts in one bolt-row and HammerHead arrangements), the Eurocode 3 standardized component model had to be improved and extended. The experimental programme included six different end-plate and bolt arrangements and covered sixteen specimens. The steel grade of test specimens was S355, the bolt diameter M20, whereas the bolt grade was 8.8 and 10.9 for the two series. The end-plate thickness varied between 12 mm and 24 mm. The specimens were investigated under pure bending conditions using a four-point-bending test arrangement. In all tests the typical displacements and the bolt force distribution were measured. The end-plate plastic deformations were measured after the tests by an automatic measuring device. The measured data were presented and evaluated by the moment-bolt-row force and moment-distance from centre of compression diagrams and by the deformed end-plate surfaces. From the results the typical failure modes and the joint behaviour were specified and presented. Furthermore the influence of the end-plate thickness and the pretension of the bolts on the behaviour of bolted joints were analysed.

Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements

  • Yi, Jin-Hak;Cho, Soojin;Koo, Ki-Young;Yun, Chung-Bang;Kim, Jeong-Tae;Lee, Chang-Geun;Lee, Won-Tae
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.281-298
    • /
    • 2007
  • The load carrying capacity of a bridge needs to be properly assessed to operate the bridge safely and maintain it efficiently. For the evaluation of load carrying capacity considering the current state of a bridge, static and quasi-static loading tests with weight-controlled heavy trucks have been conventionally utilized. In these tests, the deflection (or strain) of the structural members loaded by the controlled vehicles are measured and analyzed. Using the measured data, deflection (or strain) correction factor and impact correction factor are calculated. These correction factors are used in the enhancement of the load carrying capacity of a bridge, reflecting the real state of a bridge. However, full or partial control of the traffic during the tests and difficulties during the installment of displacement transducers or strain gauges may cause not only inconvenience to the traffic but also the increase of the logistics cost and time. To overcome these difficulties, an alternative method is proposed using an excited response part of full measured ambient acceleration data by ordinary traffic on a bridge without traffic control. Based on the modal properties extracted from the ambient vibration data, the initial finite element (FE) model of a bridge can be updated to represent the current real state of a bridge. Using the updated FE model, the deflection of a bridge akin to the real value can be easily obtained without measuring the real deflection. Impact factors are obtained from pseudo-deflection, which is obtained by double-integration of the acceleration data with removal of the linear components on the acceleration data. For validation, a series of tests were carried out on a steel plategirder bridge of an expressway in Korea in four different seasons, and the evaluated load carrying capacities of the bridge by the proposed method are compared with the result obtained by the conventional load test method.

Structural Safety Evaluation for Static Strength of Thin Plate RC Member with High Strength Concrete (고강도 콘크리트를 적용한 얇은 RC 판부재의 정적 강도 안전성 평가)

  • Hwang, Hoon-Hee;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.69-75
    • /
    • 2017
  • Structural safety evaluation for static strength of thin plate RC member with high strength concrete is conducted in this study. Static strengths were predicted and compared with the experimental values. Predicted values were calculated by the evaluation formula based on the punching shear behavior and the yield line theory which can appear in the plate members. Static load tests were carried out for the specimens with high strength concrete and the test results were compared with the required performance in design. The comparison results show that the specimens with high strength concrete have sufficient structural safety for flexural and punching shear performance required in design. High strength concrete specimens exhibited excellent strength despite their small thickness. The range of concrete strengths applied in this study was about 60 MPa to 100 MPa.

Characteristics of Bearing Capacity and Settlement According to the Difference of Loading Plate Sizes (재하판의 크기에 따른 지지력 및 침하특성)

  • 정형식;김도열
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.179-188
    • /
    • 2002
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from plate-load test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were performed with four different sizes of square plate, which are B=10, 15, 20, and 25cm respectively, on five different kinds of subsoils. Test results showed that the ultimate bearing capacity of a footing on the sand did not increase proportional to the traditional formula and the bearing capacity on the clay also increased a little with increasing the size of loading plate. The settlement of test plate on the sand did not increase as the traditional formula of Terzaghi and Peck (1967), and the settlement on the clay also did not increase proportional to the traditional formula.

After-fracture redundancy in simple span two-girder steel bridge

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.651-670
    • /
    • 2007
  • An experimental study to evaluate a redundancy capacity in simple span two plate-girder bridges, which are generally classified as a non-redundant load path structure, has been performed under the condition that one of the two girders is seriously damaged. The bottom lateral bracing was selected as an experimental parameter and two 1/5-scale bridge specimens with and without bottom lateral bracing have been prepared. The loading tests were first performed on the intact specimens without cracked girder within elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and concrete deck redistributed partly the applied load to the uncracked girder, but the lateral bracing system played a significant role of the load redistribution when a girder was damaged. The redundancy was evaluated based on the test results and an appropriate redundancy level was evaluated when the lateral bracing was provided in a seriously damaged simple span two-girder steel bridge.