• Title/Summary/Keyword: Plate load

Search Result 1,988, Processing Time 0.028 seconds

Development and Uncertainty Assessment of Interface Friction Prediction Equation Between Steel Surface and Cohesionless Soils (강재면과 사질토 사이의 경계면 마찰각 예측식 개발 및 불확실성 평가)

  • Lee, Kicheol;Kim, So-Yeun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • Characteristics of interface friction between cohesionless soils and geotechnical structure surfaces play an important role in the analysis of earth load and resistance on the structure. In general, geotechnical structures are mainly composed of either steel or concrete, and their surface roughnesses with respect to soil particle sizes influence the interface characteristics between soils and the structures. Accurate assessment of the interface friction characteristics between soils and structures is important to ensure the safety of geotechnical structures, such as mechanically stabilized earth walls reinforced with inextensible reinforcements, piles embedded into soils, retaining wall backfilled with soils. In this study, based on the database of high quality interface friction tests between frictional soils and solid surfaces from literature, equation representing peak interface friction angle is proposed. The influential factors of the peak interface friction angle are relative roughness between soil and solid surface, relative density of frictional soil, and residual (constant volume) interface friction angle. Futhermore, for the developed equation of the interface friction angle, its uncertainty was assessed statistically based on Goodness-of-fit test results.

Load Transfer Mechanism of the Hybrid Beam-Column Connection System with Structural Tees (T 형강을 사용한 합성골조 보-기둥 접합부의 하중전달 메카니즘)

  • 김상식;최광호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • The composite frame system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however has also a lot of problems in practical design and construction process due to the material dissimilarities. Considering these circumstances, this research is aimed at the development of the composite structural system which enables the steel beams to be connected to the R/C columns with higher structural safety and economy. Basically the proposed connection system is composed of four split tees, structural angles reinforced by stiffener, high strength steel rods, connecting plates and shear plates. The structural tests have been carried out to verify the moment transfer mechanism from beam flange to steel rods or connecting plates through the angle reinforced by siffener. The four prototype specimens have been tested until the flange of beam reached the plastic states. From the tests, no distinct material dissimilarities between concrete and steel have been detected and the stress transfer through wide flange beam - structural angle - high strength steel rod or connecting plate is very favorable.

Effect of Feeding Complete Rations with Variable Protein and Energy Levels Prepared Using By-products of Pulses and Oilseeds on Carcass Characteristics, Meat and Meat Ball Quality of Goats

  • Agnihotri, M.K.;Rajkumar, V.;Dutta, T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1437-1449
    • /
    • 2006
  • Thirty six pre-weaned Barbari kids at 4 months age were reared on four rations computed using coarse cereal grains and by-products of pulses and oil seeds with Crude Protein (CP) and Total Digestible Nutrients (TDN) of 12 and 55% (Low protein Low energy); 12 and 60% (Low protein High energy); 14 and 55% (High protein Low energy); and 14 and 60% (High protein High energy), respectively. After 180 days on feed, male animals ($4{\times}5=20$) were slaughtered to study the effect of diet on carcass characteristics and meat quality. To asses the effect, if any, of such diet on product quality, meat balls were prepared and evaluated for quality changes when fresh as well as during storage ($-20{\pm}1^{\circ}C$). Feeding a ration with CP12 and TDN 60% (LH) to kids produced animals with highest slaughter weight (20.3 kg) yielding higher carcass weight and dressing percentage, lean (65.6%) and fat (6.6%) contents with low bone and trim losses. Although total variety meat yield was markedly higher in HL, the non-carcass fat deposition was relatively higher in LH carcasses. The water activity ($a_w$) of fresh goat meat ranged from 0.994-0.995 and total cholesterol 72.8-90.5 mg/100 g meat. The pH was high in HL and HH meat resulting in decreased ($p{\leq}0.05$) extract release volume (ERV). Meat balls were prepared using meat obtained from goats fed different rations (treatments) and stored at $-20{\pm}1^{\circ}C$. They were evaluated on day 0 and months 1, 2, 3, 4 for physicochemical, microbiological and organoleptic changes. Overall moisture (%), $a_w$, TBA number and pH value were 67.9, 0.987, 0.17, 6.6 respectively and were not affected by treatments except pH that was significantly ($p{\leq}0.01$) lower on LH. As the storage period advanced moisture, pH, $a_w$ and TBA number increased irrespective of treatments. Feeding various diets had no marked effect on microbial load of meat balls but with increasing storage period Standard Plate Count (SPC) and psychrotrophs declined ($p{\leq}0.01$). Treatment LL and LH produced meat balls with better flavour.

Design and Construction of a 1:5 Scale 10-Story R.C. Apartment Building Model for Earthquake Simulation Tests (지진모의실험을 위한 10층 R.C. 공동주택의 1:5 축소모델 설계 및 시공)

  • Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Han-Seon;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.55-66
    • /
    • 2011
  • The purpose of this study was to develop an efficient process in the design and construction of a 1:5 scale 10-story R.C. apartment building model for an earthquake simulation test. The reduction ratio of the specimen was determined by the size ($5m{\times}5m$) and pay load (600kN) of the available shaking table and the availability of model reinforcements. For efficiency and quality control of the reinforcement work, prefabrication was used. Construction was conducted in two steps, the wall in one step, and another step for the slab, because it was impossible to remove the formwork of a wall if the walls and slabs in a story were constructed in one step. The slip form construction method was used repetitively for walls. The formwork of a wall was made with veneer and acryl plate on each side, so it was possible to check the quality of the concrete placing. To construct this model, it took roughly six months with five full-time research assistants, for a total of 602 man days of labor in construction.

An Experimental Study on the Shear Behavior of Reinforced Concrete Beams Strengthened by Slit Type Steel Plates with Anchor Bolt (앵커볼트 체결 Slit형 강판 보강 RC보의 전단거동에 관한 실험적 연구)

  • Lee, Choon-Ho;Jeong, Woo-Dong;Shim, Jong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.703-710
    • /
    • 2010
  • Reinforced concrete beams of existing structure often encounter insufficient shear problems for various reasons. Application of steel plates is one of widely used methods for shear strengthening of reinforced concrete beams that are insufficient of shear capacity. This study presents test results on strengthening shear deficient RC beams by external bonding of vertical and diagonal slit type steel plates with anchor bolt. Test parameters are width, interval, angle and length of slits with anchor bolt. The purpose was to evaluate the failure modes and shear capacities for RC beams strengthened by various slit type steel plates with anchor bolt. The results showed that the slit type steel plate specimens strengthened by adhesive bonding and bolting failed in shear fracture modes at maximum load. Flexural crack first occurred on the tension face of beam and then inclined cracks occurred on the shear span. Finally, slit type steel plates strengthened by adhesive bonding and fastening bolts managed to delay abrupt debonding and didn't detach fully from main body of RC beam.

Bio-protective potential of lactic acid bacteria: Effect of Lactobacillus sakei and Lactobacillus curvatus on changes of the microbial community in vacuum-packaged chilled beef

  • Zhang, Yimin;Zhu, Lixian;Dong, Pengcheng;Liang, Rongrong;Mao, Yanwei;Qiu, Shubing;Luo, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.585-594
    • /
    • 2018
  • Objective: This study was to determine the bacterial diversity and monitor the community dynamic changes during storage of vacuum-packaged sliced raw beef as affected by Lactobacillus sakei and Lactobacillus curvatus. Methods: L. sakei and L. curvatus were separately incubated in vacuumed-packaged raw beef as bio-protective cultures to inhibit the naturally contaminating microbial load. Dynamic changes of the microbial diversity of inoculated or non-inoculated (control) samples were monitored at $4^{\circ}C$ for 0 to 38 days, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Results: The DGGE profiles of DNA directly extracted from non-inoculated control samples highlighted the order of appearance of spoilage bacteria during storage, showing that Enterbacteriaceae and Pseudomonas fragi emerged early, then Brochothrix thermosphacta shared the dominant position, and finally, Pseudomonas putida showed up became predominant. Compared with control, the inoculation of either L. sakei or L. curvatus significantly lowered the complexity of microbial diversity and inhibited the growth of spoilage bacteria (p<0.05). Interestingly, we also found that the dominant position of L. curvatus was replaced by indigenous L. sakei after 13 d for L. curvatus-inoculated samples. Plate counts on selective agars further showed that inoculation with L. sakei or L. curvatus obviously reduced the viable counts of Enterbacteraceae, Pseudomonas spp. and B. thermosphacta during later storage (p<0.05), with L. sakei exerting greater inhibitory effect. Inoculation with both bio-protective cultures also significantly decreased the total volatile basic nitrogen values of stored samples (p<0.05). Conclusion: Taken together, the results proved the benefits of inoculation with lactic acid bacteria especially L. sakei as a potential way to inhibit growth of spoilage-related bacteria and improve the shelf life of vacuum-packaged raw beef.

Long Term Efficacy of Posterior Lumbar Interbody Fusion with Standard Cages alone in Lumbar Disc Diseases Combined with Modic Changes

  • Kwon, Young-Min;Chin, Dong-Kyu;Jin, Byung-Ho;Kim, Keun-Su;Cho, Yong-Eun;Kuh, Sung-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.322-327
    • /
    • 2009
  • Objective : Posterior lumbar interbody fusion (PLIF) is considered to have the best theoretical potential in promoting bony fusion of unstable vertebral segments by way of a load sharing effect of the anterior column. This study was undertaken to investigate the efficacy of PLIF with cages in chronic degenerative disc disease with Modic degeneration (changes of vertebral end plate). Methods : A total of 597 patients underwent a PLIF with threaded fusion cages (TFC) from 1993 to 2000. Three-hundred-fifty-one patients, who could be followed for more than 3 years, were enrolled in this study. Patients were grouped into 4 categories according to Modic classification (no degeneration : 259, type 1 : 26, type 2 : 55, type 3 : 11). Clinical and radiographic data were evaluated retrospectively. Results : The clinical success rate according to the Prolo's functional and economic outcome scale was 86% in patients without degeneration and 83% in patients with Modic degeneration. The clinical outcomes in each group were 88% in type 1, 84% in type 2, and 73% in type 3. The bony fusion rate was 97% in patients without degeneration and 83% in patients with Modic degeneration. The bony fusion rate in each group was 81% in type 1, 84% in type 2, and 55% in type 3. The clinical success and fusion rates were significantly lower in patients with type 3 degeneration. Conclusion : The PLIF with TFC has been found to be an effective procedure for lumbar spine fusion. But, the clinical outcome and bony fusion rates were significantly low in the patients with Modic type 3. The authors suggest that PLIF combined with pedicle screw fixation would be the better for them.

Input and Output Characteristics of Input Current Controlled Inverter Arc Welding Machine with High Efficiency (입력전류 제어형 고효율 인버터아크용접시스템의 입력 및 출력 특성연구)

  • 최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.358-369
    • /
    • 2000
  • Shielded metal arc welding machines with AC transformer have been widely used for thin-plate welding applications. Because of being bulky, heavy and of tap-changing property, so the SMAW's are changing to new power electronic circuits such as inverter circuit in order to reduce the system size and also to improve the welding performances at input output sides. The PWM inverter arc welding machine with diode rectifier has better output welding performances but it is has the plentiful harmonics and the lower input power factor. To solve these problems, input current-controlled scheme is considered for PWM inverter arc welding system, and then total input power factor is maintained to be more than 99%. Also a new combined control is proposed which can control both instantaeous welding output voltage and current under constant power condition, and as a result the variations of instantaneous current and voltage can be reduced to very narrow range in the V-I curve relationship, and hence the variance of welding current and voltage become so reduced. In addition the spatter generated during welding process is greatly reduced up to 70%. And the overall effiency can be improved up to 10%, which becomes higher when the load is lower.

  • PDF

Stiffness evaluation of elastomeric bearings for leg mating unit (LMU용 일래스토머릭 베어링의 강성평가)

  • Han, Dong-Seop;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.106-111
    • /
    • 2017
  • In this study, the stiffness of an LMU (Leg Mating Unit), which is a device required for installing the top side part of an offshore structure, was examined through structural analysis. This unit is mounted on the supporting point of the structure and is used to absorb the shock at installation. It is a cylindrical structure with an empty center. To support the vertical load, elastomeric bearings (EBs) and iron plates are laminated in layers. The stiffness of the EBs is basically influenced by the size of the bearings, but it varies with the number of laminated sheets inside the same sized structure. The relationship between the stiffener and the compressive stiffness is investigated, and its design is suggested. The stiffness of the EBs is analyzed by calculating the reaction force, while controlling the displacement. First, the relationship between the size of the reinforcing plate and the compressive stiffness is considered. Next, the relationship between the number of stacked reinforcing plates and the compression stiffness is considered. Different loads are required for each installed point. The goal is to design the compression stiffness in such a way that the same deformation occurs at each point in the analysis. In this study, ANSYS is used to perform the FE analysis.

A Study on the Composite Behavior of Simply Supported Composite Girders Considering the Partial Interaction (불완전 합성율을 고려한 단순합성형의 합성거동에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Park, Jae Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.543-555
    • /
    • 1997
  • Generally, in a steel-concrete composite gilder, the shear connector which was constructed between concrete deck and steel girder should have enough stiffness to behave as one body, because the conformity between plate and concrete deck is influences by the stiffness and spacing of the shear connectors. If the stiffness of shear connectors are insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, an easy method is presented to evaluate the stiffness or spacing of the shear connector according to the degree of imperfection without difficult calculations for a composite gilder with partial interaction. Also, the horizontal shearing force applied to the shear connector and the longitudinal axial force, which is occurs at contact surface between concrete deck and steel girder, have been presented in a simple influence line that is various to the parameters of sectional properties, degree of imperfection and applied load points. Furthermore, through the case study, it determined the relationships between the degree of imperfection and the follows 1) spring constants 2) axial force and horizontal shearing force 3) stress and neutral axis by using the partial differential equation based on Newmark's Partial Interaction Theory.

  • PDF