• Title/Summary/Keyword: Plate in Water

Search Result 1,495, Processing Time 0.024 seconds

Physicochemical, Microbiological and Sensory Properties of Food Additive-Free Grilled Pork Products during Cold Storage (식품 첨가제 미함유 그릴 돈육햄의 냉장저장 중 물리화학, 미생물학 및 관능적 품질 특성)

  • Kim, Il-Seok;Jin, Sang-Geun;Park, Gi-Hun;Jeong, Gi-Jong;Kim, Dong-Hun;Yang, Mi-Ra;Ha, Gyeong-Hui;Lee, Mu-Ha
    • the MEAT Journal
    • /
    • s.34 winter
    • /
    • pp.14-25
    • /
    • 2007
  • The objective of this study was to investigate the physicochemical, microbiological and sensory properties of food additive-free grilled pork products manufactured using loin (T1), tender loin (T2) and ham (T3). The samples were heated for 30 min at $60^\circC$, and then 50 min for $150^\circC$. After cooling, vacuum packaged grilled pork samples was stored at $4\pm$$1^\circC$ for 40 days. The pH values of grilled pork samples ranged from 5.92 (T1) to 6.10 (T3) at the initial storage time, and from 6.28 (T1) to 6.60 (T3) after 40 days. The water holding capacities (%) was 85.99~93.24% for T1, 85.26~93.89% for T2 and 89.11~94.67% for T3, all of which were slightly higher than those of other pork products. The shear force values of T2 were significantly higher (p<0.05) than those of the other pork products throughout the storage period. The TBARS and VBN values of T2 were significantly higher (p<0.05) than those of T1 and T3. With regard to microorganisms, all grilled pork samples was in good condition, showing 1.93~3.48 log10 CFU/g via total plate counts, and 1.74~3.48 log10 CFU/g for lactic acid bacteria throughout the storage period. Regarding sensory evaluation, the scores of overall acceptability in all products were above 5.0 points through 40 days of storage.

  • PDF

A study for detection of melt flow zone about polyethylene butt fusion joints (폴리에틸렌 배관 버트융착부 열용융거리 측정에 대한 연구)

  • Kil, Seonghee;Kim, Younggu;Jo, NYoungdo;Lee, Yeonjae
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2016
  • Polyethylene pipes has useful benefits which are anti-corrosive and flexible material, so it is used to gas pipes but also class 3 water pipes of nuclear power plant, process pipes of petrochemical plant and chemical plant. So the usage of polyethylene pipes is widely increased. But it has been limited for the usage of polyethylene, because it can not be directly detected to fusion joints by using non destructive evaluation. Polyethylene pipes are connected by two methods, one is butt fusion and the other is electrofusion. Butt fusion is widely used to connecting the pipes. It is proposed to method for determining the reliability of joints in this study that is detection of the melt flow zone at fusion joints. In this study, middle density polyethylene is used, outside diameter of the test specimen is 225mm and thickness is 20.5mm. Speed of ultrasonic of this test specimen is 2,200m/s. Test specimens were fabricated by varying the heating time which means from 0% to 130% applying time through heating plate to polyethylene for detecting melt flow zone. Also 4 additional test specimens were made, one was made that not scrapping attached surface of pipes but applying 100% of the proper heating time and the others were made to include of soil, gravel and vinly tape paper at fusion joints, that were also applied 100% of proper heating time. Ultrasonic testing to measure the melt flow zone of 20 test specimens was conducted by using 3.5MHz and 5.0MHz ultrasonic probes and melt flow zone measuring was conducted to three times at different point to one specimen. To differentiate the melt flow zone signal, post image processing was equally conducted to all test results and image levels, contrast, sharpen, threshold were adopted to all teat results and the test results were displayed gray scale. From the results, for the shorter heating times the reflection area of multiple echo have been increased, so the data was obtained from the position where it can be eliminated as much as possible. At 80% of proper heating time(168 sec.), the signal of melt flow zone was obtained clearly, so measuring could be conducted. From 7% of proper heating time(15 sec.) to shorter heating times. we could not obtain the signal because test specimen was not fused. From the result, we can verify that measuring of melt flow zone by using phased array ultrasonic imaging method is possible. And we can verify to complete and incomplete butt fusion by measuring the melt flow zone.

Effect of Bleeding Time on Meat Quality and Shelf-Life of Broiler (방혈 시간이 닭고기의 품질 및 저장성에 미치는 영향)

  • Chae H. S.;Ahn C. N.;Yoo Y. M.;Ham J. S.;Jeong S. G.;Lee J. M.;Choi Y. I.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.3
    • /
    • pp.187-193
    • /
    • 2005
  • This study was carried out to investigate the effect of the bleeding times(30sec., 90sec., 150sec.) at slaughtering process on meat quality and storage properties of broiler. The redness$(a^{\ast}\;value)$ of skin, wing, leg muscle decreased at high bleeding time(150sec.). However, there was no significant difference in breast muscle. WHC(water holding capacity) of breast muscle decreased from $63.64\%$ at low bleeding time(30sec.) to $61.06\%$ at high bleeding time. TBARS(thiobarbituric acid-reactive substance) values were 0.18 mgMA/kg at the low bleeding time, 0.16 mgMA/kg at the middle bleeding time(90sec.) and 0.21mgMA/kg high bleeding time on 3 days of storage. Total aerobic plate counts(TPC) were $6.25logCFU/cm^2$ at the low bleeding time, $6.25logCFU/cm^2$ at the middle bleeding time and $6.53logCFU/cm^2$ at the high bleeding time. The TPC was increased as the bleeding time increased. In conclusion, meat color of chicken were acceptable when the carcasses were slaughtered at the high bleeding time.

Physicochemical, Microbiological and Sensory Properties of Food Additive-Free Grilled Fork Products during Cold Storage (식품 첨가제 미함유 그릴 돈육햄의 냉장저장 중 물리화학, 미생물학 및 관능적 품질 특성)

  • Kim, Il-Suk;Jin, Sang-Keun;Park, Ki-Hoon;Jung, Gi-Jong;Kim, Dong-Hun;Yang, Mi-Ra;Hah, Kyung-Hee;Lee, M.
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.269-275
    • /
    • 2006
  • The objective of this study was to investigate the physicochemical, microbiological and sensory properties of food additive-free grilled pork products manufactured using loin (T1), tender loin (T2) and ham (T3). The samples were heated for 30 min at $60^{\circ}C$, and then 50 min for $150^{\circ}C$. After cooling, vacuum packaged grilled pork samples was stored at $4{\pm}1^{\circ}C$ for 40 days. The pH values of grilled pork samples ranged from 5.92 (T1) to 6.10 (T3) at the initial storage time, and from 6.28 (T1) to 6.60 (T3) after 40 days. The water holding capacities(%) was $85.99{\sim}93.24%$ for T1, $95.26{\sim}93.89%$ for T2 and $89.11{\sim}94.67%$ for T3, all of which were slightly higher than those of other pork products. The shear force values of T2 were significantly higher(p<0.05) than those of the other pork products throughout the storage period. The TBARS and VBN values of T2 were significantly higher(p<0.05) than those of T1 and T3. With regard to microorganisms, all grilled pork samples was in good condition, showing $1.93{\sim}3.48\;log_{10}$ CFU/g via total plate counts, and $1.74{\sim}3.48\;log_{10}$ CFU/g far lactic acid bacteria throughout the storage period. Regarding sensory evaluation, the scores of overall acceptability in all products were above 5.0 points through 40 days of storage.

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF