• Title/Summary/Keyword: Plate heat exchangers

Search Result 146, Processing Time 0.027 seconds

A Numerical Analysis on the Heat Transfer and Pressure Drop Characteristics of Welding Type Plate Heat Exchangers (용접형 판형열교환기의 열전달 및 압력강하특성에 관한 수치해석)

  • Jeong, Jong-Yun;Nam, Sang-Chul;Kang, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.676-682
    • /
    • 2008
  • Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using Computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is $H_2O$/LiBr solution with the LiBr concentration of 50-60% in mass. The numerical simulation shows reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems.

Analysis on condensation heat transfer and pressure drop to develop design program for plate heat exchangers (판형열교환기 설계프로그램 개발을 위한 응축열전달 및 압력강하 분석)

  • Ko, Jea-Hyun;Song, Young-Ho;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • The purpose of this study is to get the formulas of condensation heat transfer coefficient and pressure drop about the water to develop design program for plate type heat exchangers. The single phase flow of cold side was calculated with the correlation of Ko. Condensation heat transfer coefficient model proposed by Annaiev was used and Lockhart model was used to analyze the pressure drop. The calculation algorithm was proposed to calculate heat transfer rate and pressure drop simultaneously. The prediction errors remained within 20% compared to the commercial code in the working range of the plate heat exchangers.

Study on Heat Transfer Characteristics of Discrete Fin-and-tube Heat Exchangers (독립 핀-튜브 열교환기의 열전달 성능특성에 관한 연구)

  • Lee, Ho-Seong;Kim, Yong-Han;Choi, Jong-Min;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.274-280
    • /
    • 2005
  • The objective of this study Is to investigate the heat transfer performance of plate discrete fin-and-tube heat exchangers with large fin pitch. In this study, twenty-two heat exchangers were tested with a variation of fin pitch, number of tube row, longitudinal tube pitch and fin alignment. Discrete fin type exchangers improved heat transfer performance more than 10% compared to tile continuous fin type heat exchangers. The air-side heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row, The staggered fin alignment improved heat transfer performance more than 6% compared to the inline fin alignment. The effect of longitudinal tube pitch was insignificant on the j-factor and experiments found opposite effects on the j-factor with respect to fin alignment. Heat transfer correlations were developed from the measured data for flat plate discrete fin-and-tube heat exchangers with large fin pitch. The correlations yielded good predictions of the measured data with mean deviations of 1,4% and 0.3% for tire inline and staggered tube alignment, respectively.

  • PDF

Performance Evaluation of Plate Heat Exchanger with Chevron Angle Variations (쉐브론 각도변화에 따른 판형 고온 용액열교환기의 성능평가)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Kim, Hyo-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.520-526
    • /
    • 2009
  • The objectives of this paper are to measure the heat transfer and pressure drop of the plate heat exchangers for absorption system applications. Three types of plate heat exchangers with different chevron angles are tested in the present experiment. Heat transfer and pressure drop performance of plate heat exchangers are measured in various operating conditions, and compared each other. The results show that the heat transfer rate of high theta ($120^{\circ}$) and mixed theta plate heat exchanger increases about 118% and 98% at the solution flow rate 350 kg/h compared to that of low theta ($60^{\circ}$), respectively. The effectiveness of high theta was evaluated about $0.53{\sim}0.85$ in this experimental range. The experimental correlations of the Nu and f were developed with error bands of ${\pm}7%$ and ${\pm}12%$.

A study on the pressure drop characteristics of plate and shell heat exchangers (Plate and Shell 열교환기의 압력강하 특성에 관한 연구)

  • Seo, Moo-Kyo;Kim, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.25-30
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) has been applied to the refrigeration and air conditioning systems as evaporators or condensers fur their high efficiency and compactness. The purpose of this study is to analyze the characteristics of pressure drop in plate and shell heat exchanger. An experiment for single phase (low pressure drop in plate and shell heat exchanger was performed. Also numerical work was conducted using the FLUENT code for $ {\kappa}-{\varepsilon}$ model. The dependence of friction factor on geometrical Parameters was numerically investigated. The study examines the internal flow and the pressure distribution in the channel of plate and shell heat exchanger. The results of CFD analysis compared with experimental data, and the difference of frictor factor in plate side and shell side are 10% and 12%, respectively. Therefore, the CFD analysis model is effectively predict the performance of plate and shell heat exchanger.

  • PDF

Air-Side Performance of Fin-and-Tube Heat Exchanger with Copper Plate or Copper Spiral Fins (구리 재질의 평판 핀과 나선형 핀이 사용된 핀-관 열교환기의 공기측 성능)

  • Lee, Jin-Wook;Park, Ji-Hoon;Lee, Jung-Pyo;Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.269-278
    • /
    • 2011
  • We investigate the heat-transfer and pressure-drop characteristics of fin-and-tube heat exchangers with a copper plate or copper spiral fins. Twenty-four samples with different fin pitches and tube rows were tested. For both configurations, the effect of the fin pitch on the j factor is negligible, and the f factor increases with the fin pitch. The effect of the tube row depends on the configuration. For plate fin-and-tube heat exchangers, the j factor decreases as the row number increases; the reverse is true for spiral exchangers. We explain this by considering the flow pattern. The j factor for plate fin-and-tube heat exchangers is larger than that for spiral exchangers, and the difference decreases as the row number increases. The f factor of the plate fin-and-tube heat exchanger is also larger. We compare our results with existing predictions of correlations.

A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1366-1371
    • /
    • 2008
  • Four simulation models of plastic plate heat exchangers are designed and simulated. The flat plate type heat exchanger is designed as the reference model in order to evaluate how much thermal performance increases. The turbulence promoter type heat exchanger is fabricated with cylindrical-type vortex generators and rib-type turbulence promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type heat exchanger has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. The flows are assumed as a three-dimensional, incompressible and turbulent model. The standard k-$\varepsilon$ model is used as the turbulent flow modeling, the SIMPLE algorithm is used to treat the coupling between pressure and velocity, and first order upwind scheme is used for discretization of momentum, turbulent and energy. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type.

  • PDF

An Experimental Study on Condensation Heat Transfer Characteristics and Pressure Drop of Plate Heat Exchangers using the Alternative Refrigerant R410A (대체 냉매 R410A를 적용한 판형열교환기의 응축열전달 특성 및 압력강하에 대한 실험적 연구)

  • Kim, Y.H.;Han, D.H.;Lee, K.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.220-225
    • /
    • 2001
  • The plate heat exchanger is characterized. by low pressure drop and high heat transfer coefficient. The experimental study has been performed on the condensation heat transfer and pressure drop characteristics of the plate heat exchangers in this study. In the present study, a brazed type plate heat exchanger was investigated at a chevron angle of $45^{\circ},\;55^{\circ},\;and\;70^{\circ}$ with R410A. Condensation temperatures were varied from $20^{\circ}C\;and\;30^{\circ}C$, and mass flux was ranged from $13{\sim}34\;kg/m^{2}s$ with constant heat flux ($=5\;kw/m^{2}$). The heat transfer coefficient and pressure drop increased with the chevron angle. Average condensation heat transfer coefficients and pressure drops are decreased with increasing condensation tempeature.

  • PDF

An Experimental Study of Condensation in Plate Heat Exchangers with R-410A (R-410A를 적용한 판형 열교환기의 응축 성능에 관한 실험적 연구)

  • Byun, J.H.;Lee, K.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.304-310
    • /
    • 2000
  • The experimental study has been conducted on heat transfer characteristics of the plate heat exchangers(PHE) by several researchers. However most of all were focused on a gasket-type plate heat exchanger. Therefore further studies are need for a brazed-type. In the present study, a brazed type plate heat exchanger was tested at a chevron angle of $70^{\circ},\;55^{\circ}$ and $45^{\circ}$ with R-22 and R-410A. Condensation temperatures were $24.5^{\circ}C$, and mass flux was ranged from 35 to $60kg/m^2s$. The inlet and exit conditions are in a superheated vapor and subcooled liquid, respectively. The heat transfer coefficient increased with the chevron angle. The heat transfer coefficient of R-22 was lamer than that of R-410A for all chevron angles.

  • PDF

Heat transfer and pressure drop characteristics of plate heat exchangers for absorption application (흡수식 시스템의 용액열교환기용 판형열교환기의 열전달 및 압력강하 특성 실험)

  • Kim, Hyun-Jun;Kim, Jung-Hwan;Kim, Sung-Soo;Jeong, Jin-Hee;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.347-352
    • /
    • 2005
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop in plate heat exchangers for absorption applications, and to quantify the effect of mass flow rate, solution concentration, and geometric conditions such as chevron angle on the heat transfer coefficient and pressure drop in the plate heat exchangers. The working fluid is $H_2O$/LiBr solution with the LiBr concentration range of 53.2 - 62.5 % in mass. The results show that the overall heat transfer coefficient increases linearly with increasing Re. The heat transfer rate increases with increasing the chevron angle while it does not significantly depend on the LiBr concentration. The pressure drop also increases with increasing the chevron angle. The effect of the chevron angle on the pressure drop is more significant than that of the concentration.

  • PDF