• Title/Summary/Keyword: Plate fuel assembly

Search Result 53, Processing Time 0.018 seconds

Microstructure characterization technique of spacer garter spring coil X-750 material (스페이서 가터 스프링 코일 X-750 소재 정밀 조직 분석 방법)

  • Hyung-Ha Jin;I Seol Ryu;Gyeng-Geun Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.109-118
    • /
    • 2021
  • In the periodic surveillance material test for the spacer component of fuel channel assembly in CANDU, a microstructural characterization analysis is required in addition to the mechanical property evaluation test. In this study, detailed microstructure analysis and simple mechanical property evaluation of archive spacer parts were conducted to indirectly support the surveillance test and assist in the study of spacer material degradation. We investigated the microstructural characteristics of the spacer garter spring coil through comparative analysis with the plate material. The main microstructure characteristics of the garter spring coil X-750 are represented by the fine grain size distribution, the ordering phase distribution developed inside the matrix, the high dislocation density inside the grains, and the arrangement of coarse carbides. In addition, the yield strength of the garter spring coil X-750 was indirectly evaluated to be approximately 1 GPa. We also established an analytical method to elucidate the microstructural evolution of the radioactive spacer garter spring coil X-750 based on Canadian research experiences. Finally, we confirmed the measurement technique for helium bubble formation through TEM examination on the helium implanted X-750 material.

Study on the channel of bipolar plate for PEM fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 유로 연구)

  • Ahn Bum Jong;Ko Jae-Churl;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.15-27
    • /
    • 2004
  • The purpose of this paper is to improve the performance of Polymer electrolyte fuel cell(PEMFC) by studying the channel dimension of bipolar plates using commercial CFD program 'Fluent'. Simulations are done ranging from 0.5 to 3.0mm for different size in order to find the channel size which shoves the highst hydrogen consumption. The results showed that the smaller channel width, land width, channel depth, the higher hydrogen consumption in anode. When channel width is increased, the pressure drop in channel is decreased because total channel length Is decreased, and when land width is increased, the net hydrogen consumption is decreased because hydrogen is diffused under the land width. It is also found that the influence of hydrogen consumption is larger at different channel width than it at different land width. The change of hydrogen consumption with different channel depth isn't as large as it with different channel width, but channel depth has to be small as can as it does because it has influence on the volume of bipolar plates. however the hydrogen utilization among the channel sizes more than 1.0mm which can be machined in reality is the most at channel width 1.0, land width 1.0, channel depth 0.5mm and considered as optimum channel size. The fuel cell combined with 2cm${\times}$2cm diagonal or serpentine type flow field and MEA(Membrane Electrode Assembly) is tested using 100W PEMFC test station to confirm that the channel size studied in simulation. The results showed that diagonal and serpentine flow field have similarly high OCV and current density of diagonal (low field is higher($2-40mA/m^2$) than that of serpentine flow field under 0.6 voltage, but the current density of serpentine type has higher performance($5-10mA/m^2$) than that of diagonal flow field under 0.7-0.8 voltage.

  • PDF

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.