• Title/Summary/Keyword: Plate analysis

Search Result 6,046, Processing Time 0.035 seconds

A Study on the Characteristics of Ca(OH)2 According to the Calcination Conditions of Oyster Shells and Its Application for Exterior Water Paints (굴 패각의 소성 조건에 따른 소석회의 특성과 외부용 수성 도료 적용 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Han, Chang Soo;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.594-605
    • /
    • 2022
  • CaO was prepared by calcining for oyster shells using a microwave kiln. It was analyzed to Ca(OH)2 synthed on hydration reaction from prepared CaO. The synthesized Ca(OH)2 was formulated as an external water paint. Oyster shells (325 mesh, 43 ㎛) were decarbonized for (a) 950 ℃/1 hr and (b) 1,150 ℃/1 hr to prepare CaO. In the calcination condition of (a), CaO was 56.7 wt%, and in the calcination condition of (b), CaO was 100 wt%. To compare CaO by calcination of oyster shells with that of limestone, limestone (25~30 mm) was decarbonized at 950 ℃/1 hr to prepare CaO, and as a result of the analysis(XRD), it was analyzed as CaO 100 wt%. CaO was prepared under the calcining conditions of oyster shells (b) 1,150 ℃/1 hr, and Ca(OH)2 was synthesized through hydration. Hydration conditions of the prepared CaO were (a) CaO : H2O(100 g : 200 g) and (b) CaO : H2O(100 g : 400 g). As a result of the hydration reaction, it was confirmed as low reactivity. 100 wt% of Ca(OH)2 was synthesized. In particular, Ca(OH)2 synthesized under the hydration condition of (a) was analyzed in a plate shape. An external water paint was formulated with Ca(OH)2 synthesized from oyster shells as the main component. When 15 items of the external water paint standard specification (KS M 6010) were analyzed, it was confirmed that all other criteria were satisfied except for freezing stability.

SHRIMP Zircon U-Pb Age and Geochemistry of Igneous Rocks in the Ssangyong and Yongchu Valleys and Mungyeong Saejae Geosites, Mungyeong Geopark (문경지질공원 쌍룡계곡, 용추계곡, 문경새재 지질명소 화성암류의 SHRIMP 저어콘 U-Pb 연령과 지구화학)

  • Wonseok Cheong;Yoonsup Kim;Giun Han;Taehwan Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.73-94
    • /
    • 2023
  • We carried out the sensitive high resolution ion microprobe (SHRIMP) zircon U-Pb age dating and whole-rock geochemical analysis of granitoids and felsic porphyries in the Ssangyong Valley, Yongchu Valley, and Mungyeong Saejae geosites in the Mungyeong Geopark. The igneous rocks crop out in the western, northwestern and central parts of the Mungyeong city area, respectively, and intruded (meta)sedimentary successions of the Ogcheon Metamorphic Belt, Cambro-Ordovician Mungyeong Group and Jurrasic Daedong Group. The U-Pb isotopic compositions of zircon from two felsic porphyries and one granite samples in the Ssanyeong Valley yielded the Cretaceous intrusion ages of 93.9±3.3 Ma (tσ), 95.1±4.0 Ma (tσ) and 94.4±2.0 Ma (tσ), respectively. On the other hand, a felsic dike sample and a granite in the Yongchu Valley and a porphyritic granite in the Mungyeong Saejae had intrusion ages of 90.2±2.0 Ma (tσ), 91.0±3.0 Ma (tσ) and 88.6±1.5 Ma (tσ), respectively. Based on the average standard error calculated in combination with results of previous studies in this area (Lee et al., 2010; Yi et al., 2014; Aum et al., 2019), the geochronological results show that spatial variation in intrusion age of ~5 Myr between the Ssangyong (94.5±0.2 Ma) and Yongchu Valleys (89.7±0.4 Ma) is apparent. The geochemical compositions of major and trace elements in the samples showed an affinity of typical post-orogenic granite, indicating their petrogenesis during the late stage of Early Cretaceous magmatic activity possibly in association with subduction events of the Izanagi Plate.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF

Studies on the Determination Method of Natural Sweeteners in Foods - Licorice Extract and Erythritol (식품 중 감초추출물 및 에리스리톨 분석법에 관한 연구)

  • Hong Ki-Hyoung;Lee Tal-Soo;Jang Yaung-Mi;Park Sung-Kwan;Park Sung-Kug;Kwon Yong-Kwan;Jang Sun-Yaung;Han Ynun-Jeong;Won Hye-Jin;Hwang Hye-Shin;Kim Byung-Sub;Kim Eun-Jung;Kim Myung-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.4
    • /
    • pp.258-266
    • /
    • 2005
  • Licorice Extract and Erythritol, food additives used in korea, are widely used in foods as sweetener. Its application for use in food is regulated by the standard and specification for food additives but official analytical method far determination of these sweetener in food has not been established. Accordingly, we has been carried out to set up analytical method of the glycyrrhizic acid in several foods by the way of thin layer chromatography and high performance liquid chromatography glycyrrhizic acid is qualitative anaylsis technique consists of clean-up with a sep-pak $C_{18}$ cartridge, separation of the sweeteners by Silica gel 60 F254 TLC plate using 1-butanol:4Nammonia solution:ethanol (50:20:10) as mobile solvent. Also, the quantitative analysis for glycyrrhizic acid, was performed using Capcell prk $C_{18}$ column at wavelength 254nm and DW:Acetonitrile (62:38 (pH2.5)) as mobile phase. and we has been carried out to set up analytical method of the erythritol in several foods by the way of high performance liquid chromatography. erythritol is qualitative anaylsis technique consists of clean-up with a DW and hexane. The quantitative analysis for erythritol, was performed using Asahipak NH2P-50 column, Rl and DW:Acetonitrile (25:75) as mobile phase. The glycyrrhizic acid results determined as glycyrrhizic acid in 105 items were as follows; N.D$\∼$48.7ppm for 18 items in soy sauce, N.D$\∼$5.3ppm for 12 items in sauce, N.D$\∼$988.93ppm for 15 items in health food, N.D$\∼$180.7ppm for 26 items in beverages, N.D$\∼$2.6ppm for 8 items in alcoholic beverages repectively and ND for 63 items in the ethers. The erythritol results determined as erythritol in 52 items were as follows; N.D$\∼$155.6ppm for 13 items in gm, N.D$\∼$398.1ppm for 12 items in health foods repectively and ND for 45 items in the others.

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF

Supplementary Woodblocks of the Tripitaka Koreana at Haeinsa Temple: Focus on Supplementary Woodblocks of the Maha Prajnaparamita Sutra (해인사 고려대장경 보각판(補刻板) 연구 -『대반야바라밀다경』 보각판을 중심으로-)

  • Shin, Eunje;Park, Hyein
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.98
    • /
    • pp.104-129
    • /
    • 2020
  • Designated as a national treasure of Korea and inscribed on the UNESCO World Heritage List, the Tripitaka Koreana at Haeinsa Temple is the world's oldest and most comprehensive extant version of the Tripitaka in Hanja script (i.e., Chinese characters). The set consists of 81,352 carved woodblocks, some of which have two or more copies, which are known as "duplicate woodblocks." These duplicates are supplementary woodblocks (bogakpan) that were carved some time after the original production, likely to replace blocks that had been eroded or damaged by repeated printings. According to the most recent survey, the number of supplementary woodblocks is 118, or approximately 0.14% of the total set, which attests to the outstanding preservation of the original woodblocks. Research on the supplementary woodblocks can reveal important details about the preservation and management of the Tripitaka Koreana woodblocks. Most of the supplementary woodblocks were carved during the Joseon period (1392-1910) or Japanese colonial period (1910-1945). Although the details of the woodblocks from the Japanese colonial period have been recorded and organized to a certain extent, no such efforts have been made with regards to the woodblocks from the Joseon period. This paper analyzes the characteristics and production date of the supplementary woodblocks of the Tripitaka Koreana. The sutra with the most supplementary woodblocks is the Maha Prajnaparamita Sutra (Perfection of Transcendental Wisdom), often known as the Heart Sutra. In fact, 76 of the total 118 supplementary woodblocks (64.4%) are for this sutra. Hence, analyses of printed versions of the Maha Prajnaparamita Sutra should illuminate trends in the carving of supplementary woodblocks for the Tripitaka Koreana, including the representative characteristics of different periods. According to analysis of the 76 supplementary woodblocks of the Maha Prajnaparamita Sutra, 23 were carved during the Japanese colonial period: 12 in 1915 and 11 in 1937. The remaining 53 were carved during the Joseon period at three separate times. First, 14 of the woodblocks bear the inscription "carved in the mujin year by Haeji" ("戊辰年更刻海志"). Here, the "mujin year" is estimated to correspond to 1448, or the thirtieth year of the reign of King Sejong. On many of these 14 woodblocks, the name of the person who did the carving is engraved outside the border. One of these names is Seonggyeong, an artisan who is known to have been active in 1446, thus supporting the conclusion that the mujin year corresponds to 1448. The vertical length of these woodblocks (inside the border) is 21 cm, which is about 1 cm shorter than the original woodblocks. Some of these blocks were carved in the Zhao Mengfu script. Distinguishing features include the appearance of faint lines on some plates, and the rough finish of the bottoms. The second group of supplementary woodblocks was carved shortly after 1865, when the monks Namho Yeonggi and Haemyeong Jangung had two copies of the Tripitaka Koreana printed. At the time, some of the pages could not be printed because the original woodblocks were damaged. This is confirmed by the missing pages of the extant copy that is now preserved at Woljeongsa Temple. As a result, the supplementary woodblocks are estimated to have been produced immediately after the printing. Evidently, however, not all of the damaged woodblocks could be replaced at this time, as only six woodblocks (comprising eight pages) were carved. On the 1865 woodblocks, lines can be seen between the columns, no red paint was applied, and the prayers of patrons were also carved into the plates. The third carving of supplementary woodblocks occurred just before 1899, when the imperial court of the Korean Empire sponsored a new printing of the Tripitaka Koreana. Government officials who were dispatched to supervise the printing likely inspected the existing blocks and ordered supplementary woodblocks to be carved to replace those that were damaged. A total of 33 supplementary woodblocks (comprising 56 pages) were carved at this time, accounting for the largest number of supplementary woodblocks for the Maha Prajnaparamita Sutra. On the 1899 supplementary woodblocks, red paint was applied to each plate and one line was left blank at both ends.