• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.03 seconds

Ultimate load behaviour of tapered steel plate girders

  • Shanmugam, N.E.;Min, Hu
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.469-486
    • /
    • 2007
  • The paper is concerned with the behavior of tapered steel plate girders, primarily subjected to shear loading; experimental as well as finite element results obtained from the studies are presented in this paper. In the experimental study, 11 large-scale girders, one of uniform section and 10 tapered, were tested to failure and all girders were analysed by finite element method. The results are compared and the accuracy of the finite element modeling established. A parametric study was carried out with thickness of web, loading direction and taper angle as parameters. An analytical model, based on Cardiff model for girders of uniform cross-section, is also proposed in the paper.

Slippage Effects on the Curvature Shape of Unsymmetric Laminates (비대칭 적층판의 곡률형상에 대한 미끄러짐 효과)

  • Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.420-425
    • /
    • 2000
  • The room-temperature shapes of cured unsymmetric composite laminates have out-of-plane warping after autoclave processing. In addition, they exhibit two stable room-temperature configurations due to snap-through phenomena when the side length of laminates exceeds a critical value. The cured shapes of unsymmetric laminates are influenced by many environmental factors. Experiments show that the effect of too-plate cannot be ignored and has significant influence on the cured shape of unsymmetric laminates. In this present study, approximations to the strain fields are used in the expression for the total potential energy and the Rayleigh-Ritz method is applied. The slippage effects resulting from the interaction between the laminates and the tool-plate are considered. By introducing a dimensionless slippage coefficient and correlating the corresponding value with experimental results, the influence of processing parameters is investigated. Modeling is extended to predict curvatures of plate configurations with various aspect ratio.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

Modeling for Frost Growth on a Cold Plate (냉각 평판에서 서리 성장 모델링)

  • Yang, Dong-Keun;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1546-1551
    • /
    • 2004
  • This paper presents a mathematical model to predict the frost properties and heal and mass transfer within the frost layer formed on a cold plate. The laminar flow equations for the air-side are analyzed. and the empirical correlations of local frost properties are employed in order to predict the frost layer growth. The correlations of local frost density and effective thermal conductivity of frost layer, obtained from various experimental conditions, are derived as functions of various frosting parameters (Reynolds number, frost surface temperature, absolute humidity and temperature of moist air, cooling plate temperature, and frost density). The numerical results are compared with experimental data and the results of various models to validate the present model, and agree well with experimental data within a maximum error of 10%. The heat and mass transfer coefficients obtained from the numerical analyses are presented, as the results, it is found that the model for frost growth using the correlation of heat transfer coefficient without solving air flow have a limitation in its application.

  • PDF

Development of Software System for Plate Forming Simulation (강판의 곡가공 시뮤레이션을 위한 전산시스템 개발)

  • Lee, Joo-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.79-87
    • /
    • 1999
  • As it is well appreciated plate forming by line heating takes an important role in ship production process. The paper deals with the development of line heating simulator which can produce the resultant deformation due to line heating in a few minute adn with which user can see the result graphically. For the present purpose mechanical modelling is adopted which can explicitly represent the physical resultant of line heating. In developing the present line heating simulator several program modules are integrated by adopting GUI concept such that the simulator can produce resultant deformation with keeping high accuracy. Application example is illustrated for the twisted shape surface which can be frequently seen in ship and offshore structures.

  • PDF

A comprehensive study on active Lamb wave-based damage identification for plate-type structures

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.759-767
    • /
    • 2017
  • Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.

Prediction and Analysis of Bobbin ECT Signals generated by Tube Defects near Support Plate (지지대 부근의 전열관 결함으로 인해 발생되는 보빈 와전류신호의 예측 및 분석)

  • Shin, Young-Kil;Lee, Yun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.942-944
    • /
    • 2005
  • In this study, eddy current signals from various anomalous defects in the heat exchanger tube are predicted af their signal slope characteristics no analyzed. The signal changes due to frequency increase are also observed. Based in the accumulated knowledge, the analysis of superimposed signal is attempted which includes the effects of support plate. Both differential and absolute bobbin probe signals are analyzed. For the prediction of signals, axisymmetric finite element modeling is used and this leads us to the utilization of slope angle analysis of the signal. Results show that differential signals are useful to locate the position of defect under the support plate and absolute signals no easy to predict and analyze even though they no superimposed signals. Combined use of these two types of signals will accomplish a reliable inspection.

  • PDF

A Study on the Weavingless Arc Sensor System in GMA Welding (I) -Implementation of Weld Seam Tracking Algrithm- (GMA 용접에서 강제적인 위빙이 없는 아크센서 시스템에 관한 연구 (I) -용접선 추적 알고리즘의 구현-)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.44-54
    • /
    • 1998
  • In this study a new arc sensor algorithm for automatic weld seam tracking was proposed, which uses the relative welding current variation according to the tip-to-workpiece distance in GMA welding. Since the new developed arc sensor algorithm is not sensitive to unstable factors of arc signal, the system is expected to get rid of the problems of already existing arc sensor system which include the difficulty of modeling the process for various welding conditions and limitation of application to thick plate welding. Thus the system is applicable not only to thick plate welding but also to thin plate welding. To implement the new arc sensor algorithm the system parameters which include sampling time, averaging range, weighting factor of moving averaging, basic compensation time, and basic compensation distance were determined by experimental analysis. Consequently this system has shown the successful tracking capability for the various welding conditions.

  • PDF

Experiments on Buckling Characteristics of Strain Energy Hinges for Solar Array Deployment (인공위성 태양전지판 전개에 사용되는 변형 에너지 힌지의 좌굴특성 실험)

  • Heo, Seok;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.558-562
    • /
    • 2000
  • This research is concerned with the experiments on buckling characteristics of strain energy hinge(SEH) for solar arrays. The dynamic characteristics of the strain energy hinge is very important since it affects the shape and speed of the solar array deployment. The rapid deployment results in overshoot and undesirable residual vibrations. In this study, we carry out a series of buckling experiments to identify the dynamic characteristics of the SEH, which is made of strip measures. Buckling tests were done on the single-plate, double-plate and triple-plate SEH and VSEH. The experimental results show that the SEH has a very complex buckling behavior which can not be coped with theoretically. The modeling problem of the SEH is also discussed.

  • PDF

Thermal analysis inside a small chamber including radiation (미소 챔버 내 복사열전달을 수반한 열유동 해석)

  • Lee, Hyung-Sik;Do, Gi-Jung;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.194-198
    • /
    • 2006
  • In this study, numerical modeling was performed to analyze air flow including radiation heat transfer inside a small chamber. Characteristics of heat transfer between source plate and target through glass are investigated for various surface temperature of heat source plate with buoyancy effect due to gravity force. Conduction heat transfer through the glass is considered and heat source plate is assumed to be a black body. Target surface temperature is largely affected by the radiation heat transfer. It can also be seen that as the source temperature increases target surface is dominated by radiation rather than convective heat transfer by air.

  • PDF