• 제목/요약/키워드: Plate Impact

검색결과 639건 처리시간 0.021초

데크플레이트와 경량성형재가 결합된 슬래브의 차음성능에 대한 실물실험 평가 (A Study on the Sound Insulation for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam)

  • 노영숙;윤성호
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 2015
  • This study is to explore floor impact sound and sound insulation of reinforced concrete structure with void-deck slab system which combines polystyrene void foam and T-shaped steel deck plate. A void-deck slab system can effectively reduce the amount of concrete used and hence the mass of a reinforced concrete slab. Also void slab system has dynamically favorable for bending. Three-bay 2-story building was constructed as a mock up test specimen using void-deck slab system and floor impact sound was measured to valuate sound insulation performance. Light weight floor impact and heavy weight floor impact were investigated. Light weight floor impact pressure levels were 32dB, 28dB, and 29db at representative locations which are $1^{st}$ level in the floor impact sound insulation performance grading system. The heavy-weight floor impact pressure levels were 44dB, 45dB, and 43dB at representative locations which are $2^{nd}$ level in the floor impact sound insulation performance grading system. Therefore void-deck slab system can be used in public housing apartment building in terms of not only effectively reduced construction materials but also floor impact sound insulation.

저속 충격을 받는 복합재료 적층판의 손상해석 (Analysis on the Composite Laminated Plate Subjected to Low Velocity Impact)

  • 이호철;이영신;김재훈;전제춘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.244-249
    • /
    • 2000
  • Recently, composite material which has much excellent mechanical characteristics has been applied in many industries. However, it has a brittle characteristic under impact event. Especially, its invisible characteristics of the damaged area has been the motivation of many engineers investigation, and the nonlinearity of the impact mechanism is one of the main reason to assume the damaged area too simple. The damage mechanism of the composite laminated plate subjected to low velocity impact using ABAQUS/Standard & user subroutine was presented here.

  • PDF

저속충격을 받는 Carbon/Epox 적층판의 손상 해석 (Failure Analysis on the Carbon/Epoxy Laminate Subjected to Low Velocity Impact)

  • 이호철;이영신;김재훈;전제춘
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.98-101
    • /
    • 2000
  • Recently, composite material which has much excellent mechanical characteristics has been applied in many industries. However, it has a brittle characteristic under impact condition and its invisible characteristics of the damaged area has been the motivation of many engineers investigation. The modified failure criterion is implemented to predict the failure behavior of the composite plate subjected to low velocity impact using commercial finite element analysis code, ABAQUS-Ver. 5.8. The new criterion is in good agreement with experimental results and can predict the failure behavior of the composite plate subjected to low velocity impact more accurately.

  • PDF

35톤급 FRP선박 외판재의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Side Plate of 35 Ton Class FRP Ship)

  • 김형진;이진정;고성위;김재동
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.137-142
    • /
    • 2005
  • The effects of temperature and initial crack length on impact fracture behavior of side plate material of 35 ton class FRP ship, which are composed by glass fiber and unsaturated polyester resin, were investigated. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decrease in temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increase in initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$,. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/EP composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyester resin. Further, decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photograph of impact fracture surface.

  • PDF

Numerical study on steel plate-concrete composite walls subjected to projectile impacts

  • Lee, Kyungkoo;Shin, Jinwon;Lee, Jungwhee;Kim, Kapsun
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.225-240
    • /
    • 2022
  • Local responses of steel plate-concrete composite (SC) walls under impact loads are typically evaluated using design equations available in the AISC N690s1-15. These equations enable design of impact-resistant SC walls, but some essential parts such as the effects of wall size and shear reinforcement ratio have not been addressed. Also, since they were developed for design basis events, improved equations are required for accurate prediction of the impact behaviors of SC walls for beyond design basis impact evaluation. This paper presents a numerical study to construct a robust numerical model of SC walls subjected to impact loads to reasonably predict the SC-wall impact behavior, to evaluate the findings observed from the impact tests including the effects of the key design parameters, and to assess the actual responses of full-scale SC walls. The numerical calculations are validated using intermediate-scale impact tests performed previously. The influences of the fracture energy of concrete and the conservative aspects of the current design equations are discussed carefully. Recommendations are made for design practice.

Yaw 를 가진 긴 관통자와 경사판재의 고속충돌 수치해석 (Numerical Simulation of High-Velocity Oblique Impacts of Yawed Long Rod Projectile Against Thin-Plate)

  • 유요한
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1426-1437
    • /
    • 2002
  • Using the Lagrangian explicit time-integration finite element code NET3D which can treat three-dimensional high-velocity impact problems, oblique penetration processes of long rod projectile with yaw against thin plate are simulated. Through the comparison of simulation result with experimental result and other code's computational result, the adaptability and accuracy of NET3D is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. Main research contents to be handled in this paper include the followings. First, the accuracy and efficiency estimation of NET3D code result obtained from the oblique penetration simulations of long rod projectile with yaw against thin plate. Second, the effect of increasing impact velocity. Third, the effect of initial yaw for the spaced-plate target. Residual velocities, residual lengths, angular velocities, and final deformed configurations obtained from the NET3D computations are compared with the experimental results and other code's computational results such as Eulerian code MESA and Lagrangian code EPIC. As a result of comparisons, it has been found that NET3D code is superior to EPIC code and MESA code in the prediction capability of residual velocity and residual length of penetrator. The key features obtained from the experiment can be successfully reproduced through NET3D simulations. Throughout the study, the applicability and accuracy of NET3D as a metallic armor system design tool is verified.

폴리카보네이트 판의 경사충격에 의한 도비 거동 수치연구 (Numerical Study on Ricochet Behavior with Inclined Impact of Polycabonate Plates)

  • 양태호;이영신;조종현
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, the numerical simulation using AUTODYN-3D program was investigated angle trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the polycabonate plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The effect of the angle of inclination on the trajectory and kinetic energy of the projectile were studied. The dynamic deformation behaviors tests of polycabonate were compared with numerical simulation results which can be used as predictive purpose. From the simulation, the ricochet phenomenon was occurred for angles of inclination of $0^{\circ}{\leq}{\theta}{\leq}20^{\circ}$. The projectile perforated the plate for ${\theta}{\leq}30^{\circ}$, thus defining a failure envelope for numerical configuration. The numerical analyses are used to study the effect of the projectile impact velocity on the depth of penetration (DOP). It can be observed that the residual velocities were almost linear relative to penetration velocities. It means that polycarbonate has high resistance at higher velocities.

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing

  • Lee, Sang-Youl;Rus, Guillermo;Park, Tae-Hyo
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.525-548
    • /
    • 2008
  • This article deals the theory for solving an inverse problem of plate structures using the frequency-domain information instead of classical time-domain delays or free vibration eigenmodes or eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent noises. This approach provides the advantage that it is not necessary to visually identify the portion of the signal that contains the information about the defect. The theoretical model for Quantitative nondestructive evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the forward problem, and inverse procedure for detecting the defects are developed. The theoretical formulation is experimentally verified using dynamic responses of a steel plate under impact loading at several points. The signal synthesized by FEM, the residual, and its components are analyzed for different choices of time window. The noise effects are taken into account in the inversion strategy by designing a filter for the cost functional to be minimized. The technique is focused toward a exible and rapid inspection of large areas, by recovering the position of the defect by means of a single accelerometer, overriding experimental calibration, and using a reduced number of impact events.

ESPI를 이용한 복합재료 박리결함의 정량평가 (Quantitative Evaluation of Delamination Inside of Composite Materials by ESPI)

  • 김경석;양광영;강기수;지창준
    • 비파괴검사학회지
    • /
    • 제24권3호
    • /
    • pp.246-252
    • /
    • 2004
  • 복합재료는 이방성의 특징으로 매우 복잡한 역학거동을 하며, 해석 및 신뢰성 검사에 많은 어려움이 있다. 특히, 기존의 비파괴검사기법으로 내부손상을 검출하는 것은 매우 어려운 실정이다. 이에 본 연구에서는 복합재구조물의 가장 취약한 분야인 충격에 의한 손상이 발생할 경우 효과적인 검출기법을 개발하고, 충격에 따른 내부결함의 정량평가에 ESPI를 활용하였다. 인공결함을 이용하여 ESPI기법의 신뢰성을 확보하고 실제 충격손상 시험편에 대해 적용하여 5%이내의 오차율로 결함을 정량평가하였다.