• Title/Summary/Keyword: Plate Detection

Search Result 553, Processing Time 0.031 seconds

Development of a Steel Plate Surface Defect Detection System Based on Small Data Deep Learning (소량 데이터 딥러닝 기반 강판 표면 결함 검출 시스템 개발)

  • Gaybulayev, Abdulaziz;Lee, Na-Hyeon;Lee, Ki-Hwan;Kim, Tae-Hyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.129-138
    • /
    • 2022
  • Collecting and labeling sufficient training data, which is essential to deep learning-based visual inspection, is difficult for manufacturers to perform because it is very expensive. This paper presents a steel plate surface defect detection system with industrial-grade detection performance by training a small amount of steel plate surface images consisting of labeled and non-labeled data. To overcome the problem of lack of training data, we propose two data augmentation techniques: program-based augmentation, which generates defect images in a geometric way, and generative model-based augmentation, which learns the distribution of labeled data. We also propose a 4-step semi-supervised learning using pseudo labels and consistency training with fixed-size augmentation in order to utilize unlabeled data for training. The proposed technique obtained about 99% defect detection performance for four defect types by using 100 real images including labeled and unlabeled data.

Evaluation of the characteristics of the reflection plate to measure defects in the invisible area using infrared thermography

  • Kim, Sang Chae;Park, Il Cheol;Kang, Chan Geun;Jung, Hyunchul;Chung, Woon Kwan;Kim, Kyeong Suk
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.856-862
    • /
    • 2020
  • Defect inspection system for industrial applications takes the important portion. Non-destructive inspection method has been significantly improved. Infrared thermography, as one of method for non-destructive inspection, can provide relatively precise data and quick inspection time. This study, it was performed to measure defect according to the measurement limit of the non-visible areas such as the back surface of the pipe using reflection plate using reflection plate based on Infrared thermography. The materials of the reflection plate were determined in consideration of the space limitation and the thermal characteristics, and defects were detected by the manufactured reflection plate. Detection of defect in non-visible area using the candidate materials for reflection plate was conducted.

Damage Detection of Plate Using Long Continuous Sensor and Wave Propagation (연속형 센서와 웨이브 전파를 이용한 판 구조물의 손상감지)

  • Lee, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.272-278
    • /
    • 2010
  • A method for damage detection in a plate structure is presented based on strain waves that are generated by impact or damage in the structure. Strain responses from continuous sensors, which are long ribbon-like sensors made from piezoceramic fibers or other materials, were used with a neural network technique to estimate the damage location. The continuous sensor uses only a small number of channels of data acquisition and can cover large areas of the structure. A grid type structural neural system composed of the continuous sensors was developed for effective damage localization in a plate structure. The ratios of maximum strains and arrival times of the maximum strains obtained from the continuous sensors were used as input data to a neural network. Simulated damage localizations on a plate were carried out and the identified damage locations agreed reasonably well with the exact damage locations.

Long Distance Vehicle License Plate Region Detection Using Low Resolution Feature of License Plate Region in Road View Images (로드뷰 영상에서 번호판 영역의 저해상도 특징을 이용한 원거리 자동차 번호판 영역 검출)

  • Oh, Myoung-Kwan;Park, Jong-Cheon
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.239-245
    • /
    • 2017
  • For privacy protection, we propose a vehicle license plate region detection method in road view image served from portal site. Because vehicle license plate regions in road view images have different feature depending on distance, long distance vehicle license plate regions are not detected by feature of low resolution. Therefore, we suggest a method to detect short distance vehicle license plate regions by edge feature and long distance vehicle license plate regions using MSER feature. And then, we select candidate region of vehicle license plate region from detected region of each method, because the number of the vehicle license plate has a structural feature, we used it to detect the final vehicle license plate region. As the experiment result, we got a recall rate of 93%, precision rate of 75%, and F-Score rate of 80% in various road view images.

Serological Diagnosis of Bordetellosis: Application of Rapid Plate Agglutination Technique for the Detection of Carrier in Swine (Bordetella 감염증(感染症)의 혈청학적진단(血淸學的診斷): 특히 보균돈검색(保菌豚檢索)을 위한 급속평판응집반응(急速平板凝集反應)의 실용화(實用化))

  • Kang, Byong Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.18 no.2
    • /
    • pp.61-67
    • /
    • 1978
  • The detection of Bordetella bronchiseptica which is supposed to be an agent of the infectious atrophic rhinitis of swine, is likely to receive more attention in the future as the pork industry comes to realize that eradication of this infection from breeding herds is a practical possibility. Experiments described here were carried out to establish the rapid plate agglutination test for the detection of the infectious atrophic rhinitis of swine in the field using the criteria of antigen preparation, effects on the antigenecity after storing of the antigen and reaction appearing time. Also, the agglutinabilities between the plate and tube method were compared and the degree of pathological lesions were recorded in relation to tube agglutination titers. Obtained results were as follows: 1. No differences were noted in the agglutinabilities on the plate agglutination test between the treatments in antigen preparation-formolized, merthiolate-killed and living organism. 2. The agglutinability of the antigens did not show any significant changes until 10 weeks of storage at 4 C; however, after 10 weeks of storage, non-specific reaction was observed with the HPCD control sera. 3. The results of the plate and tube agglutination tests were not comparable but the effective use of the plate method in Bordetella bronchiseptica eradication programs in pigs especially in the sow is stressed as a screening test.

  • PDF

A new method to detect cracks in plate-like structures with though-thickness cracks

  • Xiang, Jiawei;Nackenhorst, Udo;Wang, Yanxue;Jiang, Yongying;Gao, Haifeng;He, Yumin
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.397-418
    • /
    • 2014
  • In this paper, a simple two-step method for structural vibration-based health monitoring for beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet transform is employed to extract crack singularity locations from mode shape and support vector regression (SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked plate-like structures using a simple formula. The crack severity detection database can be easily obtained with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage of interval wavelet transform and SVR are addressed.

Detecting Numeric and Character Areas of Low-quality License Plate Images using YOLOv4 Algorithm (YOLOv4 알고리즘을 이용한 저품질 자동차 번호판 영상의 숫자 및 문자영역 검출)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, research on license plate recognition, which is a core technology of an intelligent transportation system(ITS), is being actively conducted. In this paper, we propose a method to extract numbers and characters from low-quality license plate images by applying the YOLOv4 algorithm. YOLOv4 is a one-stage object detection method using convolution neural network including BACKBONE, NECK, and HEAD parts. It is a method of detecting objects in real time rather than the previous two-stage object detection method such as the faster R-CNN. In this paper, we studied a method to directly extract number and character regions from low-quality license plate images without additional edge detection and image segmentation processes. In order to evaluate the performance of the proposed method we experimented with 500 license plate images. In this experiment, 350 images were used for training and the remaining 150 images were used for the testing process. Computer simulations show that the mean average precision of detecting number and character regions on vehicle license plates was about 93.8%.

Damage detection of plate-like structures using intelligent surrogate model

  • Torkzadeh, Peyman;Fathnejat, Hamed;Ghiasi, Ramin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1233-1250
    • /
    • 2016
  • Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.

Lamb wave-based damage imaging method for damage detection of rectangular composite plates

  • Qiao, Pizhong;Fan, Wei
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.411-425
    • /
    • 2014
  • A relatively low frequency Lamb wave-based damage identification method called damage imaging method for rectangular composite plate is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. The viability of this method is demonstrated by analyzing the numerical and experimental Lamb wave response signals from rectangular composite plates. The technique only requires the response signals from the plate after damage, and it is capable of performing near real time damage identification. This study sheds some light on the application of Lamb wave-based damage detection algorithm for plate-type structures by using the relatively low frequency (e.g., in the neighborhood of 100 kHz, more suitable for the best capability of the existing fiber optic sensor interrogator system with the sampling frequency of 500 kHz) Lamb wave response and a reference-free damage detection technique.

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.