• Title/Summary/Keyword: Plasticity Failure

Search Result 278, Processing Time 0.025 seconds

Inelastic Stress Analysis of 1/4 Scale Prestressed Concrete Containment Vessel Model (프리스트레스 콘크리트 격납건물 1/4 축소모델의 비탄성응력해석)

  • 이홍표;전영선;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.301-308
    • /
    • 2004
  • The present study mainly focuses on the inelastic stress analysis of the 1/4 scale prestressed concrete containment vessel model(PCCV) under internal pressure and evaluates not only failure mode but also ultimate pressure capacity of the PCCV. Inelastic analysis is carried out 2D axisymmertic FE model and 3D FE model using four concrete material models which are Drucker-Prager Model, Chen-Chen Model, Damaged Plasticity Model and Menetrey-Willam Model. The uplift phenomenon of the basemat is considered in the 2D axisymmetric FE models. It is found from the 2D axisymmetric analysis results that both of Drucker-Prager model and Damaged Plasticity Model have a good performance and the uplift of the basemat is too small to influence on the global behavior of the PCCV. The FE analysis results on the ultimate pressure and failure mode have a good agreement with experimental results.

  • PDF

Analysis of Forming Limit in Tube Hydroforming (튜브하이드로포밍 공정에서의 성형한계 해석)

  • 김영삼
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.134-140
    • /
    • 2000
  • Tube hydroforming is a relatively new technology compared to conventional stamping. thus there is little knowledge base that can be utilized for process and die design. To remedy this situation considerable research is now being conducted by many researchers on significant aspects of tube hydroforming technology including material selection pre-form design hydroforking process and tool design. in the tube hydroforming process we frequently experence many failure modes like wrinkling. buckling folding back and fracture under the improper forming conditions. In this paper forming limit for failure occurrence such as fracture and wrinkling is examined theoretically and the result is compared with Back's experimental result.

  • PDF

Development of tube hydroforming technology (관재의 하이드로 포밍 기술개발)

  • 이택근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.30.2-34
    • /
    • 1999
  • The hydroforming technology has gained in importance over the last few years, because of its potential for substantial weight avings costs reduction and quality improvement such as collision property, shape fixability and rigidity of white body. However, in comparison with the traditional sheet forming process, the hydroforming is much younger and the main development efforts were made in the last 15 years. The new technology, high pressure tublar hydroforming in particular, involves many process parameters to be optimized. This paper covers a brief overview of the hydroforming simulator as well as design of die and tools. The effects of typical parameters such as internal pressure and axial compression stroke are presented. Moreover, the conditions of forming failure occurrences such as fracture and wrinkle are examinated.

  • PDF

Finite Element Analysis of Powdering of Hot-dip Galvannenled Steel using Damage Model (합금화 용융아연 도금강판의 가공시 손상모델을 이용한 도금층 파우더링에 관한 유한요소 해석)

  • Kim, D.W.;Kim, S.I.;Jang, Y.C.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.215-222
    • /
    • 2007
  • Coating of Hot-dip galvannealed steel consists of various Fe-Zn intermetallic compounds. Since the coating is hard and there for is very brittle, the surface of steel sheet is easy to be ruptured during second manufacturing processing. This is called as powdering. In addition, forming equipment might be polluted with debris by powdering. Therefore, various research have been carried out to prohibit powdering fur improving the quality of GA steel. This paper carried out finite element analysis combined with damage model which simulate the failure of local layer of hot-dip galvannealed steel surface during v-bending test. Since the mechanical property of intermetallic compound was unknown exactly, we used the properties calculated from measurements. The specimen was divided into substrate, coating layer and interface layer. Local failure at coating layer or interface layer was simulated when elemental strain reached a prescribed strain.

  • PDF

Effect of The Clearance on Core Deformation of Sandwich Plate during U-bending (U-bending 공정에서 틈새간격이 샌드위치판재의 내부구조 전단변형에 미치는 영향)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.320-323
    • /
    • 2008
  • In this study, a macroscopic approach was carried out to gain insight into the bending mechanism of metallic sandwich plates. Shear force-punch stroke curves for various clearances were analytically derived for mild steel (CSP 1N) sandwich plates with the total thickness of 3 mm and 0.5 mm face sheets. As the clearance increases, shear force of the inner structures and sensitivity of punch stroke decrease. These data are useful to derive a criterion of judgment for core shear failure and de-bonding failure during U-bending.

  • PDF

Numerical prediction of bursting failure in bulge forming using a seamed tube (심용접 튜브를 사용한 벌지 성형에서의 터짐불량 예측)

  • Kim, J.;Kim, Y.W;B.S. Kang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Finite element analyses for bursting failure prediction in bulge forming under combined internal pressure and independent axial feeding are carried out. By means of the FEM combined with Oyane's ductile fracture criterion based on Hills quadratic plastic potential, the forming limit and bursting pressure level are investigated for a seamed tube that comprises of weldment, heat affected zone(HAZ) and base material parts. Especially, in order to determine the material property of HAZ tensile tests for the base material and the weld metal are executed based on iso-strain approach. Finally, through a series of bulge forming simulations with consideration of the weldment and HAZ it is concluded that the proposed method would be able to predict the bursting pressure and fracture initiation site more realistically, so the approach can be extended to a wide range of practical bulge forming processes.

  • PDF

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

A simple procedure to simulate the failure evolution

  • Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.601-612
    • /
    • 1996
  • To simulate the large-scale failure evolution with current computational facilities, a simple approach, that catches the essential feature of failure mechanisms, must be available so that the routine use of failure analysis is feasible. Based on the previous research results, a simple analysis procedure is described in this paper for failure simulation. In this procedure, the evolution of localization is represented by a moving surface of discontinuity, and the transition between continuous and discontinuous failure modes are described via the moving jump forms of conservation laws. As a result, local plasticity and damage models, that are formulated based on thermodynamic restrictions, are still valid without invoking higher order terms, and simple integration schemes can be designed for the rate forms of constitutive models. To resolve localized large deformations and subsequent cracking, an efficient structural solution scheme is given for Static and dynamic problems.

Dynamic Materials Model-Based Study on the Formability of Bulk Metallic Glass Sheets (동적재료모델에 의한 벌크 비정질 금속의 판재성형성에 대한 고찰)

  • 방원규;이광석;안상호;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.173-176
    • /
    • 2002
  • Viscoplastic deformation and sheet forming behavior of multicomponent Zr-based bulk metallic glass alloy has been investigated. From a series of mechanical test results, basic processing maps based on Dynamic Materials Model have been constructed to establish feasible forming conditions. Stamping in laboratory scale was then performed at the various stroke speeds and temperatures using a hydraulic press. Failure in macroscopic level was examined to check the validity of constructed processing maps.

  • PDF

Evaluation of press formability for Ti-6Al-4V sheet at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 성형성 평가)

  • Bae, M.K.;Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.152-157
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. But the database is insufficient of the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hocker's punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature below and vice versa neck-induced failure above the recrystalization temperature $0.5T_m$. The formability of Ti-6Al-4V titanium alloy sheet at $750^{\circ}C$ increases about 7 times compared with that at room temperature.

  • PDF