• Title/Summary/Keyword: Plasticity Deformation

Search Result 1,211, Processing Time 0.03 seconds

High Temperature Deformation Behavior of Beta-gamma TiAl Alloy (Beta-gamma TiAl 합금의 고온변형거동)

  • Kim, J.S.;Kim, Y.W.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.429-433
    • /
    • 2006
  • High Temperature deformation behavior of newly developed beta-gamma TiAl alloy was investigated in this study. The optimum processing condition was investigated with the aid of Dynamic Materials Model (DMM). Processing maps representing the efficiency of power dissipation for microstructural evolution and instability were constructed utilizing the results of hot compression test at temperatures ranging from $1000^{\circ}C$ to $1200^{\circ}C$ and strain rate ranging from $10^{-4}/s$ to $10^2/s$. The Artificial Neural Network (ANN) simulation was adopted to consider the deformation heating. With the help of processing map and microstructural analysis, the optimum processing condition was presented and the role of $\beta$ phase was also discussed in this study.

  • PDF

Analyses of Densification and Plastic Deformation during Equal Channel Angular Pressing of CNT/Cu Powder Mixtures (CNT/Cu 혼합분말의 ECAP 공정 시 치밀화 및 소성변형 거동 해석)

  • Quang, P.;Yoon, S.C.;Jeong, Y.G.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.123-126
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF

Spur gear forging tool manufacturing method considering elastic deformation due to shrink-fitting (열박음에 의한 탄성변형을 고려한 평기어금형 제작 방법에 관한 연구)

  • Kang, J.H.;Ko, B.H.;Jae, J.S.;Kang, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.381-385
    • /
    • 2006
  • This research introduces easy tool manufacturing method regarding tool manufacturing procedure. In the conventional method, wire cutting machining and lapping operation of corner and render region were performed after shrink-fitting to ensure the accuracy of gear profile. But lapping operation is very difficult due to corner and render is located deep inside of die. In this research, wire cutting operation was performed after $1^{st}$ ring was shrink-fitted to ease lapping operation and increase the accuracy of corner radius. Before $2^{nd}$ ring fitting, lapping was completed. Elastic deformation amount due to $2^{nd}$ ring fitting and cold forging was calculated through finite element analysis and wire cutting specification was offset in that amount. Comparison of gear dimension between analysis and forged part ensures the validity of new manufacturing methods.

  • PDF

High Temperature Deformation Resistance of Stainless Steels (스테인레스강의 열간변형저항)

  • 김영환;정병완
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.366-372
    • /
    • 1999
  • The deformation behavior of commercial stainless steels under hot rolling conditions was investigated by means of hot compression tests performed in the temperature range 800$^{\circ}C$ to 1200$^{\circ}C$. The measured flow stress-strain curves were analyzed by using a simple flow stress model. It was found that the reference strength of stainless steels are much higher than that of carbon steel and that nitrogen and molybdenum alloying greatly increases flow stress of austenitic stainless steel. Ferritic and duplex stainless steel showed comparatively low flow stresses. The flow stress model, which correlates the flow stress with temperature and strain rate, was applied to predict roll forces during hot-plate rolling of stainless steels.

  • PDF

The Production Technology of Surface Fine Grain Steels by Controlled Rolling and Cooling Technology (제어압연에 의한 표면미세립강의 제조 기술)

  • 신정호;박상덕;이정환;이용희;장병록
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.188-197
    • /
    • 1999
  • Grain refinement of the structural steels was selected as the most effective method to meet improvement of strength and toughness without heat treatment. So, the future research and developing direction of ultra fine grain steels are more and more required to response to the production of eco - materials(environmental consciousness - materials) In this paper, the product of surface fine grain steels by CRCT and Inverse Transformation Method by warm deformation of martensite is carried out in order to improve the production process of Dowel Bar. It is possible to obtain surface ultra fine grain steel, when warm deformation of martensite formed after quenching is carried out from 730$^{\circ}C$ to 800$^{\circ}C$ in the finishing rolling step. The characters of surface with ultra fine grain steel is showing the cementite particles inside the ferrite grain and fine ferrite grain of about 1.2$\mu\textrm{m}$ in size.

  • PDF

Superplastic Deformation Characteristics in Powder Metallurgy Al-Li Aluminum Alloy (분말야금 Al-Li 합금의 초소성 변형 특성)

  • 장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.129-130
    • /
    • 1999
  • The superplastic deformation characteristics is powder metallurgy(PM) Al-Li alloy has been studied within the framework of a recently proposed internal variable theory of superplasticity(SSP). The flow curves were obtained by performing a series of load relaxation tests at the temperature range from 45$0^{\circ}C$ to 52$0^{\circ}C$ It has been found that the overall flow curves were separated into the grain boundary sliding(GBS) and the accommodating dislocation glide processes/ The tensile curves were also obtained to clarify the superplastic deformation bahavior of PM Al-Li alloy. The microstructural features of PM AL-Li alloy have been examined through the transmission electron microscopy.

  • PDF

Prediction on Flow Stress Curves and Microstructures of 304 Stainless Steel (304 스테인레스강의 고온 유동응력곡선과 미세조직의 예측)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.171-175
    • /
    • 1999
  • the high temperature deformation behavior of 304 stainless steel was characterized by the hot torsion test. Continuous deformation was carried out at the temperature ranges 900-110$0^{\circ}C$ and the strain rate ranges 5x10-2~5/sec. The formulation of the flow stress curves was developed as subtraction form which was based on dynamic softening mechanisms The volume fraction of dynamic recrystallization and the mean grain size could be expressed as a function of deformation variables temperature (T) strain ($\varepsilon$) strain rate ($\varepsilon$) The calculated values of flow stress and mean grain size could be well matched with experimental values.

  • PDF

Study on the relationship between Plastic Deformation and Crystal Grain Change in Warm Forging (온간 단조기에서의 소성변형과 결정입자 변화와의 관계)

  • 이해영;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.100-123
    • /
    • 1995
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM100 carbon steel is studied. If the carbon steel is deformed in warm forging temperature (about recrystallization range), the crystal grain and cementite of the internal part are changed, so material properties are changed. Some experimental values, such as the elliptic degree of cementite, the grain size of cementitie and ferrite grain size, are investigated. When the plastic deformation proceeds, the elliptic degree of cementite becomes large, the grain size of cementite particle is small, and the size of ferrite grain appears fine by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging is calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result. At effective strain 0.3 dynamic recovery and dynamic recrystallization begin, over 2.5 the organization of material has better quality that is suitable for the following cold forming.

High Temperature Deformation Behavior of Rapid-Solidification Processed Al-18Si Alloy (급냉응고된 과공정 Al-Si합금의 고온변형특성에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.183-186
    • /
    • 2000
  • The high temperature deformation behavior of spray-formed Al-19wt%Si-1.87wt%Mg-0.085wt.%Fe alloy was studied by torsion testing in the strain rate range of 0.001-1 sec-1 and in the temperature range of 300-500 $^{\circ}C$. The relationship between stress temperature and strain rate is expressed using the Power law. the behavior of dynamic recrystallization is showed in 300-35$0^{\circ}C$, 1-0.1sec-1 and the behavior of dynamic recovery is showed in 450-50$0^{\circ}C$, 0.01-0.001sec-1 The size of Si particles is mall when the temperature is low and the strain rate is high. The strain rate sensitivity(m) and the apparent activation energy(Q) indicate the dependence on strain rate and temperature for flow stress respectively. The hot ductility is high when m is high and Q is low. The maps of strain rate sensitivity and apparent activation energy suggest the optimum processing conditions.

  • PDF

A Study on Hot Workability and Microstructural Development of 7075 Al Alloy (7075Al 합금의 고온소성 및 조직제어에 관한 연구)

  • 고병철;전정식;이현민;최규창;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.114-123
    • /
    • 1995
  • Hot workability and microstructural development of 7075Al alloy were studied by hot torsion test. With decling temperature from 440$^{\circ}C$ to 340$^{\circ}C$, and strain rate ranges form 5 ${\times}$10-3/sec to 5 ${\times}$10-1/sec , flow stress and microstructural development were analyzed . The hot resoration mechanism was found to be dynamic recrystalization (DRX) form the analysis of the flow curves and the microstructures. In multistage deformation with decreasing temperature grain refinement was obtained effectively compared to conventional thermomechanical treatment (TMT) process. The strain of the 1st stage deformation at 440$^{\circ}C$ was found to play an important role for the next stage deformation behavior at 380$^{\circ}C$.

  • PDF