• Title/Summary/Keyword: Plastic viscosity

Search Result 189, Processing Time 0.03 seconds

A Study on Effect of Stabilizing Pile on Stability of Infinite Slope (무한사면의 안정성에 미치는 억지말뚝의 영향에 대한 이론적 연구)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.496-503
    • /
    • 2016
  • To analyze an infinite slope that is reinforced with stabilizing piles, the forces on the stabilizing pile were estimated by the theory of plastic deformation and the theory of plastic flow and the effects of diverse factors on the factor of safety of an infinite slope were investigated. According to the results of the analyses, the factor of the safety of the slope reinforced with stabilized piles were increased tremendously and the factor of safety decreased as the center to center distance of the stabilizing pile increased. The effect of the existence of seepage of the infinite slope with stabilizing piles on the factor of safety appears to be insignificant. Considering the formulated factor of safety of an infinite slope with stabilizing piles, the width and length of the element of the infinite slope and force on the stabilizing pile influence the factor of safety of the infinite slope with a stabilizing pile including the soil strength parameter, inclination of the slope and depth of the slope, which are important for calculating the factor of safety of a non-reinforced infinite slope. The factor of safety of an infinite slope with stabilizing piles derived from the theory of plastic deformation were increased significantly with the internal friction angle of the soil, and the minimum and the maximum factor of safety under the conditions considered in this study were 13.7 and 65.6, respectively. As the diameter of the stabilizing pile increased, the forces on the stabilizing pile also increased but the factor of safety of the infinite slope with stabilizing piles decreased due to the effects of the width and the length of the element of the infinite slope. The factor of safety of the infinite slope with stabilizing piles derived from plastic flow were much larger than that of the non-reinforced infinite slope and the factor safety of the infinite slope with a stabilizing pile increased with increasing product of the flow velocity and plastic viscosity ( ) and the factor of safety of the infinite slope with stabilizing piles decreased with increasing center to center distance of the pile.

Experimental Study on Rheological Properties of Alkali Activated Slag Pastes with Water to Binder Ratio (물 결합재 비에 따른 알칼리 활성 슬래그 페이스트의 레올로지 특성에 관한 실험적 연구)

  • Kim, Byeong-Jo;Song, Jin-Kyu;Song, Keum-Il;Oh, Myeong-Hyeon;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.511-519
    • /
    • 2015
  • Methods such table flow, slump and outflow time have used to be as a main evaluation criteria regards to fluidity of concrete. Since those methods mentioned above have some inaccuracies which are up to its condition of test. Studies that evaluate fluidity applying the rheology has increased its portion in this field. Meanwhile, demands for AAS binder have been increased in accordance with its demand for this market, studies for rheology of AAS binder are little though. Therefore, this paper mainly deals a rheological peculiarity of AAS binder according to its condition of W/B ratio and alkali activators. The fluidity of AAS paste was evaluated with the index of table flow and outflow time. And shear stress following its shear rate was analyzed through rheological test. Rheological parameters were deduced through this rheological test of Bingham model and analyzed its interrelation with fluidity test. As the final outcome, it proposed the interrelation among table flow, yield stress, viscosity and outflow time. In basis of this study, we would like to suggest a reference for mixing AAS mortars and concretes.

The Primary Research on oil Conversion Technology of biomass by Pyrolysis (열분해에 의한 바이오매스의 유류자원화 기술에 관한 기초 연구)

  • Chio, Hyuk-Jin;Yoo, Sun-Kyoung;Oh, Sang-Woo;Lee, Seung-Guk;Lee, Seung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • This study aims to develop an alternative energy like oil made from marine organic waste by marine products waste, spent fishing nets. There are already many commercial examples and case studies based on the petroleum industry-refuse plastic or refuse tire, however, it is rare that a research developing alternative energy from food waste and organic waste. Therefore, this study investigated the oil made from thermal decomposition under the high temperature and high pressure condition, and examined the possibility for commercial use by testing its own characteristics. A bio-oil from thermal decomposition at $250^{\circ}C$ and 40 atm was hard to remove impurities because of its high viscosity, showed lower caloric value than heavy oil, and generated various gases which were not appropriate for the use of fuel. It is noticeable that thermal decomposition was occurred at $250{\pm}5^{\circ}C$ using steam pressure, which much lower compared to the existing method of thermal decomposition, more than $500^{\circ}C$. Since the high viscosity of bio-oil, it is necessary a further study to use as liquid fuel.

  • PDF

A Study on the Molecular Weight Distribution of Starch (전분의 분자량 분포도에 관한 연구)

  • Kim Kyeong-Yee
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.496-502
    • /
    • 2004
  • Purified acorn starch was obtained from alkali precipitation method. Acorn amylose and acorn amylopectin were fractionated from purified acorn starch by butanol improvement method. Gel permeation chromatography (GPC) was used to measure molecular weight distribution of acorn starch, acorn amylose, acorn amylopectin and corn starch, corn amylose, corn amylopectin. GPC measurement diagrams were obtained by each retention time. And then, we used DMSO and DMF as solvent, pullulan as standard material. We calculated the Number-average molar mass (Mn), Weight-average molar mass (Mw) and polydispersity from molecular weight distribution of each sample. As a result of estimating molecular weight using GPC, Mw of amylose has small value than Mw of amylopectin. From this fact, the molecular structural aspects of amylose and amylopectin were predicted and it was in good agrement with the tendency of polydispersity by GPC. The polydispersity of starch had big value than amylose and amylopectin, from this result, it might be known that the range of molecular weight appeared broad by heterogeneous properties of two components. The viscosity of purified acorn starch, amylose, amylopectin seperated from acorn starch, was decreased by increasing the shear rate and raising the temperature exponentially. Acorn starch solutions exhibited pseudoplastic power law fluid behavior.

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

Characterization of Biomass-Based Foam Structures for Home-Meal-Replacement Containers (가정간편식 용기용 바이오매스 기반 발포구조체의 특성에 관한 연구)

  • Kim, Inae;Kim, Sumin;Kambiz, Sadeghi;Han, Jeonggu;Hwang, Kiseop;Kwon, Hyukjoon;Kim, Yongsu;Yoo, Seung Ran;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2020
  • A series of foamed plastic sheets containing biomass (as HMR container) were developed via different foaming process temperatures, and their density, porosity, WVTR, and pore morphology were evaluated. Thermal stability of samples during re-heating the food in oven, change in morphology, density, porosity, and WVTR were investigated using a simulated thermal shock process according to MIL-STD-883E assay. As such, the pore size of samples was generally increased with increasing temperature of the foaming process. It can be explained that as foaming temperature increased, the viscosity of molten resins and the repulsive force against pore expansion decreased. In addition, an increase in the thermal shock cycle reduced the pore size and WVTR, while density increased because high temperature treatment that softened the sheet matrix was followed by a low temperature incubation, which contracted the matrix, thereby changing the physical and morphological properties of samples. However, an insignificant change in density was observed and WVTR tended to be decreased, indicating that as-prepared foamed plastic sheets could be used as a high thermal stable container for HMR application. Therefore, it found that the properties of newly developed HMR containers containing biomass were dependent on the foaming process temperature. Moreover, to better understanding of these newly developed containers, further investigations dealing with foaming process temperature based on various food items and cooking conditions are needed.

Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs (다중벽 탄소나노튜브의 혼입량에 따른 시멘트 복합체의 유동성 및 강도 변화)

  • Ha, Sung-Jin;Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • With several different dosages of multi-walled CNTs which was 0.1, 0.3, and 0.5% of the weight of binder, the fluidity in fresh CNT cement composites, as well as the strength and strength development with age of the hardened composites were investigated in this experimental study. The experimental results from flow test indicated that the increase in the dosage of CNTs badly impacted on the workability of fresh composites, and the results from rheological measurements presented the decrease in plastic viscosity and the increase in yield stress according to the amount of CNTs. In addition, the thixotrophy in the flow curve obtained from the rheology test was observed more noticeably in the composites with higher dosage of CNTs. With the experiments on the strength properties, the improvement of both compressive and tensile strengths with the increase of CNTs dosage could be obtained. Moreover, early strength development by adding CNTs was found when it was compared with plain cementious matrix without CNT.

Development of equipment for tumor cauterization

  • Hoshino, Hirokazu;Ochiai, Makoto;Sakasegawa, Aya;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.474-477
    • /
    • 2002
  • Equipment to cauterize tumors by an electrically heated Kanthal wire is under development. The wire( alloy of iron, chromium and Aluminum) keeps sufficient strength up to 1400 degrees in Celsius. Although AC 50Hz current source is used in the prototype experiment, RF current will be used in future. The diameter of the Kanthal wire was 0.3 mm which was connected to Kanthal wire of 0.8 mm. The thicker wire was used as a leading wire. The possibility of application of the heating wire in combination with an ultrasound endoscope was determined, where ultrasound endoscope is to be used to monitor the location on the wire and an extent of a tumor in digestive organs. This procedure requires the wire to be applied inside ultrasound transmitting media. First, the wire was applied in the degassed water in which a chicken liver sample was submerged. The wire, however, burned out in water soon after it became red-hot at 12 A. The reason is that large current is required for the wire to become red-hot due to strong convection. Starch paste of 3 weight percent was employed instead of water. This made the wire red-hot approximately at 6 A, showing the increased viscosity of the starch decreased the convection and the wire was cover by the steam. The liver sample was cauterized successively, while the location of the wire and the liver was monitored by an ultrasound diagnosis equipment outside the plastic vessel of the starch paste.

  • PDF

Development of reference materials for mortar: Determination of the components and relation with mixing ratio

  • Lim, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.381-391
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) for mortar that can simulate the initial flow characteristics with constant quality over a long period. Through the previous research on the development of RMs for cement paste, the combination of limestone, glycerol, and water was used as the basic matrix for developing RMs for mortar in this study. In addition, glass beads of three particle sizes (0.5, 1.0, and 2.0 mm) and ISO standard sand were selected as tentative candidates to derive fine aggregate substitutes. The mixture of glass beads could simulate the initial flow characteristics of mortar, but under the same mixing ratio, replicates showed an unstable tendency to indicate inconsistent values due to the generation of electrostatic properties between materials and equipment. On the other hand, the mixture using ISO standard Sand not only simulates the constant flow characteristics for a long period of time, but also shows stable results with little error in replicates. Therefore, limestone, glycerol, ISO standard sand, and water were finally determined as components that met the required properties of RMs for mortar. The effect of each component on the flow characteristics of RMs was analyzed. It was found that glycerol increased the cohesion between the particles of standard sand, resulting in a constant increase both in the plastic viscosity and yield stress. Both limestone and standard sand had a dominant effect on the yield stress. The relationships between various mortar mixing ratios and the corresponding mixing ratios of RMs were established. In addition, the results of the verification experiment showed that the rheological properties of the RMs obtained through the relationships correlated with various water/cement ratios and the fine aggregate volume fractions of mortar obtained with same manner. In other words, the RMs for mortar developed in this study can be used as standard samples because they can simulate the initial flow characteristics of mortar of various mixing ratios for a long period without any chemical changes.

Development of reference materials for cement paste

  • Lee, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.547-556
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) that are chemically stable and can simulate the flow characteristics of cement paste. To this end, the candidate components of RMs were selected considering the currently required properties of RMs. Limestone, slag, silica, and kaolin were selected as substitutes for cement, while glycerol and corn syrup were selected as matrix fluids. Moreover, distilled water was used for mixing. To select the combinations of materials that meet all the required properties of RMs, flow characteristics were first analyzed. The results revealed that silica and kaolin exhibited bilateral nonlinearity. When an analysis was conducted over time, slag exhibited chemical reactions, including strength development. Moreover, fungi were observed in all mixtures with corn syrup. On the other hand, the combination of limestone, glycerol, and water exhibited a performance that met all the required properties of RMs. Thus, limestone, glycerol, and water were selected as the components of the RMs. When the influence of each component of the RMs on flow characteristics was analyzed, it was found that limestone affects the yield value, while the ratio of water and glycerol affects the plastic viscosity. Based on this, it was possible to select the mixing ratios for the RMs that can simulate the flow characteristics of cement paste under each mixing ratio. This relationship was established as an equation, which was verified under various mixing ratios. Finally, when the flow characteristics were analyzed under various temperature conditions, cement paste and the RMs exhibited similar tendencies in terms of flow characteristics. This indicated that the combinations of the selected materials could be used as RMs that can simulate the flow characteristics of cement paste with constant quality under various mixing ratio conditions and construction environment conditions.