• Title/Summary/Keyword: Plastic parts

Search Result 631, Processing Time 0.031 seconds

Study of Plastic Deformation of Steel Wire for Weight Reduction of Automotive Weather Strip (자동차 웨더스트립 심재 경량화를 위한 강선(Steel Wire)의 소성변형 연구)

  • Choi, Bosung;Lee, Dugyoung;Jin, Chankyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.82-86
    • /
    • 2013
  • The automotive weather strip has the functions isolating of dust, water, noise and vibration from outside. The core of weather strip is made of steel with stiffness. By using the wire formed as the core of weather strip, weight can be reduced as much as 35% by comparing with existing steel core. For this reason, forming wire is necessary to keep the zigzag shape as it is. The deformation which is occurred during forming process can be predicted and it can be used in case of manufacturing dies through CAE. In this paper, rolling process conditions are deduced and the springback amount is predicted after rolling process by using the simulation. The springback amount of product is measured by using optical microscope, and measurement result is compared with the simulation result of springback as the same condition. The suitable gap between dies to compensate springback after rolling process is predicted through simulation and it is used for manufacturing dies.

Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity (다수 캐비티를 갖는 3매 구성 사출금형에서의 충전 불균형)

  • 제덕근;정영득
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.117-121
    • /
    • 2004
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. But, when injection molding is performed using a mold with balanced runner system filling imbalances are occurred between the cavity to cavity. The previous studies by Beaumont at. all reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes of filling imbalance for 3 plate type mold with 8 cavities. And we exhibited a new so called 4BF mold (4 plate type Balanced Filling Mold) to be possible filling balance. We conducted a experimental injection molding to verify the efficiency of the 4BF mold. In the results of the experiment, we could confirmed the balanced filling possibility of the 4BF mold.

Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path (비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상)

  • Jeong, Hyun Gi;Jang, Eun Hyuk;Song, Youn Jun;Chung, Wan Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

A Study on Mechanical Characteristics Analysamsarais of PA/GF Composite Materials for Cowl Cross Beam (카울크로스빔용 PA/GF복합재료의 기계적 특성 분석에 관한 연구)

  • Hwan-kuk Kim;Jong-vin Park;Ji-hoon Lee;Heon-kyu Jeong
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • This study is about a hybrid lightweight cowl crossbeam structure with high rigidity and ability to absorb collision energy to support the cockpit module, which is an automobile interior part, and to absorb energy during a collision. It is a manufacturing process in which composite material bracket parts are inserted and injected into existing steel bars. When considering the mounting condition of a vehicle, the optimization of the fastening condition of the two parts and the mechanical properties of the composite material is acting as an important factor. Therefore, this study is about a composite material having a volume content of Polyamide(PA) and Glass Fiber used as a composite material for a composite material-metal hybrid cowl crossbeam. As a result of analyzing the physical properties of the PA/GF composite material, experimental data were obtained that can further enhance tensile strength and flexural strength by using PA66 rather than PA6 used as a base material for the composite material. And based on this, it contributed to securing the advantage of lightening by using high-stiffness composite material by improving the high disadvantage of the weight of the cowl crossbeam material, which was made only of existing metal materials.

Residual stress formation in injection-molded samples under constrained quenching (가압 급냉하에서의 사출 성형품내의 잔류 응력 형성 해석)

  • Yoon, Kyunghwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.58-68
    • /
    • 1997
  • The residual stresses in injection-molded plastic parts can be divided into two, i.e., the flow-induced residual stress produced in flowing stage and the thermally-induced residual stress produced in cooling stage. Especially, the main source for the defect in the final parts, such as warpage, is known to be the thermally-induced stresses. For the freely quenched samples the structures of residual stresses and bire-fringence have been investigated by many researchers extensively. However, the boundary condition for free quenching was found to be improper to study actual injection molding process. In the present study a datailed structure of the residual stresses and birefringence produced under constrained quenching has been investigated experimentally. In constrained quenched samples a similar pattern but much less stress values than that for the freely quenched samples has been found in the case of the thickness of 1.0 mm. Howvere, in the case of the thickness of 4.0mm, totally different stress profile has been found experimentally. Suprisingly uniform birefringence throughout whole thickness has been found for all the cases of constrained quenching. Finally, to explain the mechanism to produce the final residual stresses and bire-fringence some preliminary numerical results including free volume theory have been introduced briefly.

  • PDF

Prediction of Defect Rate Caused by Meteorological Factors in Automotive Parts Painting (기상환경에 따른 자동차 부품 도장의 불량률 예측)

  • Pak, Sang-Hyon;Moon, Joon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.290-291
    • /
    • 2021
  • Defects in the coating process of plastic automotive components are caused by various causes and phenomena. The correlation between defect occurrence rate and meteorological and environmental conditions such as temperature, humidity, and fine dust was analyzed. The defect rate data categorized by type and cause was collected for a year from a automotive parts coating company. This data and its correlation with environmental condition was acquired and experimented by machine learning techniques to predict the defect rate at a certain environmental condition. Correspondingly, the model predicted 98% from fine dust and 90% from curtaining (runs, sags) and hence proved its reliability.

  • PDF

Three-dimensional Assessment of Facial Soft Tissue after Orthognathic Surgery in Patients with Skeletal Class III and Asymmetry

  • Lee, Jong-Hyeon;Choi, Dong-Soon;Cha, Bong-Kuen;Park, Young-Wook;Jang, Insan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.6
    • /
    • pp.360-367
    • /
    • 2013
  • Purpose: The purpose of this study was to perform three-dimensional (3D) assessment of facial soft tissue in patients with skeletal Class III and mandibular asymmetry after orthognathic surgery. Methods: Samples consisted of 3D facial images obtained from five patients with A point-nasion-B point angle less than 2 degrees, and more than 5 mm of menton deviation. All patients had been treated at Gangneung-Wonju National University Dental Hospital from 2009 to 2012. They had undergone orthognathic surgery of Lefort I, and sagittal split osteotomy for correction of skeletal deformity, and orthodontic treatment. Facial scanning was performed before treatment (T1) and post-surgical orthodontic treatment (T2). Linear and angle variables of soft tissue landmarks, antero-posterior facial depth, and facial volume were measured. Results: No significant differences in width of the alar base, mouth width, and nasal canting were observed between T1 and T2. However, lip deviation, menton deviation, alar canting, lip canting, and menton deviation angle were significantly reduced at T2. Antero-posterior facial depth on the axial plane parallel to the left cheilion was significantly reduced on the deviated side and significantly increased on the non-deviated side at T2. Volume of the lower lateral and lower medial parts of the face was reduced on the deviated side, and volume of upper lateral and lower lateral parts on the non-deviated side was significantly increased at T2. Conclusion: After orthognathic surgery, facial asymmetry of soft tissue was improved following skeletal changes, especially the mandibular region. Although the length of the alar base and mouth width did not change, lip and soft tissue menton were displaced to the medial side after treatment. Facial depth also became symmetric after treatment. Facial volume showed a decrease on the lower part of the deviated side and that on lateral parts of the non-deviated side showed an increase after treatment.

Japanese mold technology revolutionizing the mold industry (금형 산업을 변혁하는 일본의 금형 기술)

  • Jeong-Won Lee;Yong-Dae Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • The mold industry in Japan, an advanced country in the mold industry, is also at a point of great change. The main causes are the Ukraine crisis and the collapse of the global supply chain (parts supply chain) caused by COVID-19. In addition, the prices of overseas products are rising sharply due to rapid exchange rate fluctuations (decrease in the value of the yen). Until now, Japan's monotsukuri industry has been actively pursuing overseas expansion, riding the trend of globalization. However, the trend began to rapidly reverse, and now the monotsukuri industry that had expanded overseas is showing a tendency to return to Japan. Another factor of change is the change in the automobile industry, which is the most demanded product in the mold industry. As the automobile industry evolves from gasoline cars to electric cars, the number of parts that make up a car will drastically decrease. This trend is expected to increase the demand for small-scale production of a variety of products in the mold industry, and furthermore, it is expected that short delivery times will be required in parts development. As in Korea, the production population working in the mold industry is rapidly decreasing in Japan as well. Even if you add up the total population working in manufacturing in Japan, it only accounts for about 15%. Even in Japan, it is judged that it will be difficult to sustain the monotsukuri industry with this small production population. Therefore, since improvement in production efficiency cannot be expected with the same manual dexterity as before, the mold industry is also demanding the development of mold technology at a different level than before to increase productivity. In this paper, I would like to introduce new Japanese mold technology collected through attending the Intermold exhibition. This is an example of applying a dedicated pin (Gastos) to a mold to prevent an increase in internal pressure during plastic injection molding, and a deep drawing press molding technology with an inherent hydraulic function.

Development of Design Formula for Predicting Post-Buckling Behaviour and Ultimate Strength of Cylindrical Shell

  • Lee, Jung-Ho;Oh, Young-Cheol;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • Cylindrical shells are often used in ship structures at deck plating with a camber, side shell plating at fore and aft parts, and bilge structure part. It has been believed that such curved shells can be modelled fundamentally by a part of a cylinder under axial compression. From the estimations with the usage of cylinder models, it is known that, in general, curvature increases the buckling strength of a curved shell subjected to axial compression, and that curvature is also expected to increase the ultimate strength. We conduct series of elasto-plastic large deflection analyses in order to clarify the fundamentals in buckling and plastic collapse behaviour of cylindrical shells under axial compression. From the numerical results, we derive design formula for predicting the ultimate strength of cylindrical shell, based on a series of the nonlinear finite element calculations for all edges, simply supporting plating, varying the slenderness ratio, curvature and aspect ratio, as well as the following design formulae for predicting the ultimate strength of cylindrical shell. From a number of analysis results, fitting curve can be developed to use parameter of slenderness ratio with implementation of the method of least squares. The accuracy of design formulae for evaluating ultimate strength has been confirmed by comparing the calculated results with the FE-analysis results and it has a good agreement to predict their ultimate strength.

Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding (롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성)

  • Hwang, B.K.;Lee, K.S.;Hong, S.E.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.