• Title/Summary/Keyword: Plastic film house soils

Search Result 84, Processing Time 0.02 seconds

Characterization of Phosphate-solubilizing Microorganisms in Upland and Plastic Film House Soils (밭과 시설재배지 토양의 인산가용화 미생물의 특성)

  • Suh, Jang-Sun;Kwon, Jang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.348-353
    • /
    • 2008
  • With the aim to explore the possible role of phosphate-solubilizing bacteria in soil, we conducted a survey of phosphate-solubilizing microorganisms colonizing in upland and plastic film house soils. Soil EC, pH, organic matter, available phosphate, exchangeable cation such as potassium, calcium and magnesium, and total P of plastic film house soils were higher than those of upland soils. Phosphate-solubilizing bacteria population was higher in plastic film house soils than upland soils, but species of phosphate-solubilizing bacteria was more diverse in the upland soils than the plastic film house soils. There was significant positive correlation between phosphate solubilization and phosphate-solubilizing bacteria in soils. Bacillus, Cedecea, Brevibacillus, Paenibacillus, Pseudomonas, Serratia spp. were isolated from upland soils and Bacillus and Cellulomonas spp. were from plastic film house soils.

Characteristics of Phosphorus Adsorption of Acidic, Calcareous, and Plastic Film House Soils

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.789-794
    • /
    • 2016
  • Continuous excessive application of phosphorus (P) fertilizer and manure in plastic film house soils can lead to an accumulation of P in soils. The understanding of P sorption by soils is important for fertilizer management. In this study, 9 samples were collected for acidic and calcareous soils as non-cultivated soil and plastic film house soils as cultivated soil Phosphorus sorption data of acidic soils fit the Langmuir equations, Freundlich equations in calcareous and plastic film house soils. In calcareous and plastic film house soils, the slope of isotherm adsorption changed abruptly, which could be caused P precipitation with $CaCO_3$. The calculated Langmuir adsorption maximum ($S_{max}$) varied from 217 to 1,250, 139 to 1,429, and $714mg\;kg^{-1}$ for acidic soils, calcareous soils, and plastic film house soils with low available phosphate concentration, respectively. From this result, maximum P adsorption by the Langmuir equation could be regarded as threshold of P concentration to induce the phosphate precipitation in soil. Phosphate-sorption values estimated from one-point isotherm for acidic and calcareous soils as non-cultivated soils were comparable with the $S_{max}$ values calculated from the Langmuir isotherm.

Desalinization Effect of Off-season Crop Cultivation in Long-term Oriental Melon Cultivated Plastic Film House Soils (휴경기 후작물 재배에 의한 참외 장기연작 비닐하우스 토양의 제염 효과)

  • Byeon, Il-Su;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.253-259
    • /
    • 2015
  • BACKGROUND: During the off-season, the cultivation of Chinese cabbage and water dropwort is often used to desalinize plastic film house soils. The objective of this study was to verify the effect of double-cropping systems on the salt removal in oriental melon cultivated plastic film house soils.METHODS AND RESULTS: Electrical conductivity (EC) and soluble salt contents were measured in soils collected from plastic film houses of oriental melon cultivation before and after the off-season crop cultivation. Also the same measurements were performed in the next oriental melon season to estimate the desalinization effect of double-cropping systems. During the cultivation of Chinese cabbage under open-field condition, ECeof surface soil was reduced from 6.0 to 0.8 dS/m. Double-cropping of water dropwort in flooded soil was also efficient in removing the salts accumulated during oriental melon cultivation. In the house soils where salts were removed during the off-season crop cultivation, soil ECewas maintained below 3 dS/m during the next oriental melon cultivation season.CONCLUSION: The off-season cropping under open-field or flooded condition was effective in desalinization of plastic film house soils. Since the salt removal effect is not expected to last for several years, the double-cropping system should be introduced every season to maintain soil EC below the critical level.

Effect of Double-Cropping Systems on Nematode Population in Plastic Film House Soils of Oriental Melon Cultivation (이모작에 따른 참외 재배 비닐하우스 토양의 선충밀도 변화)

  • Byeon, Il-Su;Suh, Sun-Young;Lee, Yong-Se;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • BACKGROUND: Crop rotation is often used as a solution to eradicate nematodes in soils used in plastic film houses for long-term cultivation of oriental melon. However, it is not clear if the double-cropping is effective in reducing nematode populations in soils. METHODS AND RESULTS: Nematode population in plastic film house soil was measured during oriental melon cultivation from April to July in short term crop rotation systems of oriental melon. Double-cropping of chinese cabbage in open-field for 3-4 months following oriental melon in plastic film houses could not prevent the build-up of high population density of nematodes. However, double-cropping of dropwort in flooded soil for 3-4 months following oriental melon in plastic film houses could effectively reduce the nematode population during the successive year of oriental melon cultivation. The reduced nematode population in soils of oriental melon-dropwort double-cropping system was continued until the mid season of progressive year oriental melon cultivation. Application of nematicide to soil before growing oriental melon in the oriental melon-dropwort double-cropping was very effective in preventing the build-up of high population density of nematode in plastic film house soils. CONCLUSION: Short-term introduction of crop rotation was not effective in suppression of high population density of nematodes in plastic film house soils of long-term year-to-year production of oriental melon. For securing the soil productivity and sustainability of plastic film house, various physical, chemical, and agronomic practices should be properly combined together.

Distribution of Micronutrients in Plastic Film House Soils of Yeongnam Provincen (영남지역 시설재배지 토양의 미량원소 함량 분포)

  • Chung, Jong-Bae;Kim, Bok-Jin;Ryu, Kwan-Sig;Lee, Seung-Ho;Shin, Hyun-Jin;Hwang, Tae-Kyung;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jeong;Kim, Jong-Jib
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.214-223
    • /
    • 2006
  • For better management of micronutrients in crop cultivation, the availability of micronutrients in the soils must be updated and evaluated as a first step. This study was conducted to investigate the distribution of micronutrients in soils of plastic film houses. Total 396 soil samples were collected from the plastic film houses of various crops in Yeongnam province (strawberry, 96; red pepper, 66; tomato, 74; oriental melon, 97; cucumber, 63). Total and available contents of B, Cu, Zn, Fe, and Mn in the soils were determined. Available B was extracted with hot water and available Cu, Zn, Fe, and Mn were extracted with 0.1 N HCl. Mean values of total contents of B, Cu, Zn, Fe, and Mn in the plastic film house soils were 25, 32, 74, 21,316, and $420mg\;kg^{-1}$, respectively. Total contents of micronutrients in the plastic film house soils were similar to those found in the open fields nearby, while they were different among the locations investigated. Mean contents extractable B, Cu, and Zn in the plastic film house soils were 2.1, 7.5, and $35mg\;kg^{-1}$, respectively. The contents of extractable B, Cu, and Zn in the plastic film house soils were higher than those found in the open fields nearby with exceptions of B in soils of strawberry and Cu in soils of red pepper and oriental melon. However, mean contents of extractable Fe and Mn in the plastic film house soils were 156 and $146mg\;kg^{-1}$, respectively, and the mean content of extractable Fe was much lower than that found in open fields nearby. The contents of extractable Zn, Fe, and Mn were higher than the sufficient levels for the crop requirements in most of the plastic film house soils investigated. Contents of extractable Cu in most soils of strawberry, tomato and cucumber cultivations were higher than the sufficient level. However, extractable Cu contents were below the sufficient level in about 30% of investigated soils of red pepper and oriental melon cultivation. Soils containing higher contents of extractable B than the sufficient level were relatively fewer in comparison to the other micronutrients.

Emission of Sulphur Dioxide Gas from Soils under Plastic Film House, Condition (토양중 퇴비종류 및 처리조건별 아황산가스 발생)

  • Kim, Bok-Young;Lee, Jong-Sik;Choi, Keum-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.72-76
    • /
    • 1998
  • In order to investigate the emission pattern of sulphur dioxide gas from the soils in the plastic film house, the amounts of sulphur dioxide gas emitted from soils was periodically measured either in the plastic film house condition or in the incubator where the interior temperature was controlled to 10, 20. 30 and $40^{\circ}C$. Each soil was mixed with either mushroom, poultry, pig or fish meal compost at the rate of 0, 10, 20, 30, 40 and 50g/kg for individual treatment and then treated with addition of 50, 100, 150 and 200ml of water. A significant increase in the emission of sulphur dioxide gas was observed in the treatment of fish meal compost and such increase was initiated from the rate of l0g/kg, while little difference was observed in other treatments. Compared to upland soils, as control, the horticultural soils containing higher sulphur content emitted more sulphur dioxide. The emission of sulphur dioxide was favoured as temperature increased and was highest with the addition of 150ml of water.

  • PDF

Comparison of the Surface Chemical Properties of Plastic Film House, Upland, and Orchard Soils in Gyeongbuk Province

  • Park, Sang-Jo;Park, Jun-Hong;Kim, Chan-Yong;Seo, Young-Jin;Kwon, Oh-Heun;Won, Jong-Gun;Lee, Suk-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.115-124
    • /
    • 2016
  • The objectives of this study were to evaluate the soil fertility about plastic film house, upland, and orchard in Gyeongbuk Province, Korea. The surface chemical properties of soil samples were investigated every 4 year from 2000 year at upland, 2001 year at orchard, and 2002 year at plastic film house. During 12 year's monitoring, mean soil pH was increased by 0.7 and 0.8 pH unit from pH 5.7 in upland and orchard, respectively, 0.5 pH unit from pH 6.5 in plastic film house. About 50% of all the field samples occupied within the recommended pH range (pH 6-7). Although soil organic matter (SOM) was gradually increased by about $10g\;kg^{-1}$ for 12 years, 40% of orchard, 49% of plastic film house, and 77% of upland soil samples were still below the 3% SOM. The mean concentration of available phosphate for 12 years in upland, orchard, and plastic film house were 530, 600, and $760mg\;kg^{-1}$, respectively. The relative frequencies exceeding the recommended available phosphate range ($300-550mg\;kg^{-1}$) were 43%, 53%, and 66% at upland, orchard, and plastic film house soils, respectively. $NH_4OAc$ exchangeable $K^+$ of upland, orchard, and plastic film house in the last soil test were 0.8, 0.9, and $1.6cmol_c\;kg^{-1}$, respectively. The relative frequencies above the recommended K level were 56% and 70% of orchard and plastic film house soil samples, respectively. The levels of crop nutrients except exchangeable Ca and Mg in upland soil were tended to increase gradually in the three fields. Exchangeable Mg, EC, available phosphate, organic matter and soil pH could be used as principle components to differentiate the chemical properties of three land fields. This analysis revealed that the soil fertility was affected by cropping method and field management, although additional research is needed to assess the importance of management on soil chemical properties and many fields indicate an opportunity for improvement in fertilizer management.

Soil Physico-chemical Properties by Land Use of Anthropogenic Soils Dredged from River Basins

  • Park, Jun-Hong;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.341-346
    • /
    • 2016
  • This study was conducted to analyze soil physico-chemical properties of agricultural land composed from the river-bed sediments. We investigated the changes of soil physico-chemical properties at 30 different sampling sites containing paddy, upland and plastic film house from 2012 to 2015. pH, exchangeable calcium and magnesium decreased gradually in paddy soils during the four years, whereas the available $P_2O_5$, exchangeable Ca, Mg and EC increased in upland and plastic film house soil. For the soil physical properties, bulk density and hardness of topsoil were $1.47g\;cm^{-3}$ and 21.5 mm and those of subsoil were $1.71g\;cm^{-3}$ and 25.7 mm in paddy soils. In upland soils, bulk density and hardness of topsoil were $1.48g\;cm^{-3}$ and 15.9 mm and those of subsoil were $1.55g\;cm^{-3}$ and 16.9 mm. In plastic film house soils, bulk density and hardness of topsoil were $1.42g\;cm^{-3}$ and 14.4 mm and those of subsoil were $1.40g\;cm^{-3}$ and 18.5 mm, respectively. The penetration hardness was higher than 3 MPa below soil depth 20 cm, and it is impossible to measure below soil depth 50 cm. As these results, in agricultural anthropogenic soils dredged from river basins, the pH, amount of organic matter and exchangeable cations decreased and soil physical properties also deteriorated with time. Therefore, it is needed to apply more organic matters and suitable amount of fertilizer and improve the soil physical properties by cultivating green manure crops, deep tillage, and reversal of deep soils.

Case study of good soil management in plastic film-house cultivation (시설하우스 재배농가의 우수토양관리 사례연구)

  • Hyun, Byung-Keun;Kim, Lee-Yul;Kim, Moo-Sung;Cho, Hyun-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.98-104
    • /
    • 2001
  • Cultivation area of the plastic film-house has been continuously increased with the increase of consumers' income. Intensive land use without fallowing or crop rotation caused severe problem such as salt accumulation in soils and in turn retarded growth and low productivity. This study was carried out to solve them derived from longterm intensive farming practices. Seven farmers who are practicing plastic film-house cultivation were recommended for case study by municipal government and selected for their excellency of cultivation and soil management. The cultivation periods of these systems were in the range of 5 to 40 years in the regions mainly located in alluvial soil cultivated with cucumber, tomato and red pepper. The soils texture of the excellent farmers' fields were silt loam or sandy loam, ranged from 7 to 15 percents of clay contents. Soil bulk density, depth of plowing layer and soil aggregates contents of the farmers' soils were 0.89, 23.1 cm, 61.6% whereas those in neighboring soils were 1.10, 17.8 cm, 54.2 %, respectively. And pH, OM and $NO_3-N$ of the farmers' soils also were better than those of neighboring soils. There was no difference in population densities of nematode between the good farmers' and neighboring soils, but actinomyces and Fusarium densities of recommended farmers' soils were better than neighboring soils. The major farming practices by the good farmers were characterized by deep plowing with flooding, amendment of crude organic matter, and reduction of chemical fertilizer application before transplanting, and also drip irrigation and liquid manure application after planting. They also conducted solar sterilization with or without flooding, removal of plastic films during rainy days and culturing rice or corn as rotation crops to avoid the problems mentioned above.

  • PDF

Change In Soil Properties After Cucumber Cultivation Under Plastic Film House At Gunwi-Gun Area (군위지역 오이 시설 재배지의 토양특성 변화)

  • Lee, Dong-Hoon;Choi, Choong-Lyeal;Kim, Kwang-Seop;Kim, Pyoung-Yeol;Seo, Jeong-Woo;Park, Man
    • Current Research on Agriculture and Life Sciences
    • /
    • v.24
    • /
    • pp.43-47
    • /
    • 2006
  • The soils of plastic film houses in which intensive cultivation takes place suffer from the serious problems such as severe salinity and accumulation of heavy metals etc. The objective of this research was to examine the change in soil properties with repeated cucumber cultivation under plastic film house at Gunwi-Gun area. The soils were classified mainly to Danbuk and SinJung series. Clay content is lower in the soils of plastic film house than in the field soil. Available $P_2O_5$ and exchangeable cations were accumulated at the level higher than the optimum range. The content of extractable heavy metals were higher in the soils of plastic film house than in those of the field. For optimum yield, much attention should be paied to the management of soils by the pre-soil survey.

  • PDF