• 제목/요약/키워드: Plastic fiber

Search Result 1,062, Processing Time 0.028 seconds

섬광검출을 위한 플라스틱광섬유에서의 체렌코프 빛 측정 및 제거 (Measurement and removal of a cerenkov light in a plastic optical fiber to detect a scintillating light)

  • 조동현;장경원;유욱재;신상훈;이봉수;박병기;조효성;김신
    • 센서학회지
    • /
    • 제17권2호
    • /
    • pp.100-105
    • /
    • 2008
  • The objectives of this study are to measure and to remove Cerenkov lights generated in a fiber-optic radiation sensor by a charge-coupled device. we have fabricated a fiber-optic radiation sensor which comprises an organic scintillator, a plastic optical fiber and a charge-coupled device. Charge-coupled device as a light measuring tool has many advantages which are easy in multi-dimensional measurements, high spatial resolution and relatively low cost.

흡수에 따른 탄소섬유 강화수지의 파괴거동 (Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion)

  • 김옥균;남기우;안병현
    • 수산해양기술연구
    • /
    • 제32권4호
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF

수용액 환경에서 수은 측정을 위한 로다민 기반의 광섬유 센서 개발 (Development of Rhodamine-Based Fiber Optic Sensor for Detection of Mercury in Aqueous Environments)

  • 이애리;김용일;김범규;박병기
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.173-177
    • /
    • 2014
  • A Rhodamine-based fiber-optic sensor has been developed to detect mercury ions in aqueous environments. The fiber-optic sensor was composed of a mercury-sensing thin film, plastic optical fibers, and a spectrometer. The mercury-sensing thin film with the synthesized Rhodamine derivatives was fabricated with Sol-Gel process. A light emitted by a light source is guided by plastic optical fibers into the thin film in an aqueous solution and a reflected light is analyzed with the spectrometer. The experiment exhibits that an absorbance in the thin film is increased as mercury concentration is increased in the solution and the absorbance by mercury is higher than that by other heavy metals. The fiber-optic sensor exhibits high chromogenic phenomenon of mercury ions among various heavy metals and the correlation between absorbance and mercury concentration in the aqueous environments.

Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic

  • Kim, Hong Gun;Shin, Hee Jae;Kim, Gwang-Cheol;Park, Hyung Joon;Moon, Ho Joon;Kwac, Lee Ku
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.268-276
    • /
    • 2014
  • Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of $0^{\circ}$, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and $90^{\circ}$, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was $90^{\circ}$, which was perpendicular to the electromagnetic wave flow, as compared to $0^{\circ}$, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.

탄소섬유 드레이핑 및 수지 유동 해석을 통한 CFRP 제조용 RTM 금형 설계 (Design of RTM molds for CFRP by carbon fiber draping and resin flow simulation)

  • 최광묵;채홍준
    • Design & Manufacturing
    • /
    • 제13권1호
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents the design strategy for the optimal RTM molds of Carbon Fiber Reinforced Plastic (CFRP) by carbon fiber draping and resin flow simulation. First, the mold shape and molding condition were determined considering the undercut and die face of the product in the draping simulation, which made the preliminary shape of the product by compressing the carbon fiber. After that, the diffusion behavior during the injection of resin in the mold was predicted by the resin flow simulation. Finally, the optimal mold shape was designed by selecting the locations of resin injection port and vent based on total results of simulations. In this paper, the mold of automotive side mirror case was selected as the representative product. Also, the actual mold was manufactured based on the simulation design to confirm the practicality of it. This study is expected to contribute to the industry as a technology to improve the reliability and productivity of CFRP producted by RTM process.

유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교 (Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling)

  • 백종현;김수진
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

무윤활 압연한 알루미늄 합금의 집합조직과 성형성 (Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet)

  • 아크라모프 사이드무로드;김인수
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

끈상여재를 이용한 Trickling Filter 반응조에서의 EPS 반응특성 (Characteristics of water quality and extra-cellular polymeric substances in trickling filter system using plastic fiber media)

  • 독고석
    • 상하수도학회지
    • /
    • 제22권1호
    • /
    • pp.169-174
    • /
    • 2008
  • In this study a trickling filter system was developed by using polypropylene media and polypropylene nylon media that has recently been developed. The experiment analyzed an ability of water purification of the two plastic media and the effects of biomass on the final effluent. As recycling ratio increases, polypropylene nylon suspender showed higher efficiency by 20%; and, when media height was lengthened twice, efficiency increased about 10%. EPS and biomass increased in proportion to the increase of recycling ratio, and bound-TOC showed a similar trend with bound-EPS (extra-cellular polymeric substances) concentration.

CFRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 휨거동 (Flexural Behavior of Prestressed Concrete Beams with CFRP(Carbon Fiber Reinforced Plastic) Tendons)

  • 조병완;태기호;최용환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.639-644
    • /
    • 2000
  • Prestressing steels are susceptible to corrosion, which is considered the major reason in the deterioration of prestressed concrete structures. To solve this problem, many research have been made to utilize new type of tendons. FRP tendons have many advantages compared to steel tendons. However, FRP tendons have some disadvantages, such as no plastic behavior. This study focused on the flexural behavior of prestresssed concrete beams which is fabricated by post-tensioning method with CFRP (Carbon Fiber Reinforced Plastic) tendons. Th results drawn from the study, prestressed concrete beams with CFRP tendons have higher flexural cracking load, flexural yielding load, and flexural fracture load. While displacement at the fracture stage is lower compared to prestressed concrete beams with steel tendon. Excessive steel reinforcement lead lower ductility index. So, appropriate reinforcement guideline is needed. Further more, prestressed concrete beams with CFRP tendons can have sufficient ductility index when ruptured by crushing of concrete or used unbonded tendon. Therefore, the best design method for prestressed concrete beams with CFRP tendons is over-reinforcement, and use of unbonded tendon.

  • PDF

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.