• Title/Summary/Keyword: Plastic elements

Search Result 531, Processing Time 0.02 seconds

Dynamic response of elasto-plastic planar arches

  • Lee, S.L.;Swaddiwudhipong, S.;Alwis, W.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.9-23
    • /
    • 1996
  • The behaviour of elasto-plastic planar arches subjected to dynamic loads in presented. The governing equations are formulated through the dynamic equations and compatibility conditions. The latter is established by applying the generalized conjugate segment analogy. Bending moments at the nodes and axial forces in the members are considered as primary variables in the elastic regime. They are supplemented by the rotations at the nodes and dislocations in the elements when plastic hinges occur. Newmark-${\beta}$ method is adopted in the time marching process. The interaction diagram of each element is treated as the yield surface for the element and the associated flow rule is enforced as plastic flow occurs. The method provides good prediction of dynamic response of elasto-plastic arches while requiring small core storage and short computer time.

Bounds on plastic strains for elastic plastic structures in plastic shakedown conditions

  • Giambanco, Francesco;Palizzolo, Luigi;Caffarelli, Alessandra
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.107-126
    • /
    • 2007
  • The problem related to the computation of bounds on plastic deformations for structures in plastic shakedown condition (alternating plasticity) is studied. In particular, reference is made to structures discretized by finite elements constituted by elastic perfectly plastic material and subjected to a special combination of fixed and cyclic loads. The load history is known during the steady-state phase, but it is unknown during the previous transient phase; so, as a consequence, it is not possible to know the complete elastic plastic structural response. The interest is therefore focused on the computation of bounds on suitable measures of the plastic strain which characterizes just the first transient phase of the structural response, whatever the real load history is applied. A suitable structural model is introduced, useful to describe the elastic plastic behaviour of the structure in the relevant shakedown conditions. A special bounding theorem based on a perturbation method is proposed and proved. Such theorem allows us to compute bounds on any chosen measure of the relevant plastic deformation occurring at the end of the transient phase for the structure in plastic shakedown; it represents a generalization of analogous bounding theorems related to the elastic shakedown. Some numerical applications devoted to a plane steel structure are effected and discussed.

The Thermal Elasto-plastic Analysis Using Layered Shell Element (적층 쉘 요소를 이용한 용접 열탄소성 해석)

  • Song, H.C.;Yum, J.S.;Jang, C.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.220-224
    • /
    • 2005
  • The thermal elasto-plastic analysis for the prediction of welding distortion of a 3 dimensional large-scaled ship structure is a very time-consuming work since the analysis is a nonlinear problem, and a lot of finite elements are needed to simulate the large ship hull block. Generally, 3-D finite elements have been used in the 3-D welding distortion problem to assess precisely the temperature gradient through the thickness direction of the welding plate. As a result of the adoption of 3-D element, degrees of freedom are rapidly increased in the problem to be solved. In this study, to improve the time efficiency of welding thermal elasto-plastic analysis, a layered shell element was proposed to simulate 3-D temperature gradient, and the results were compared with the experiment. The experiments were carried out for the type of bead-on-plate welding, and we found the measured data have a good agreement with the FEA results.

  • PDF

A Study on Space Design in Russian constructivism on early 20th Century (20세기 초 러시아 구성주의에서 나타나는 공간디자인에 관한 연구)

  • 김주연;강수미
    • Korean Institute of Interior Design Journal
    • /
    • no.29
    • /
    • pp.35-42
    • /
    • 2001
  • As a part of Avant-Garde movement centered in Russia before and after the Revolution in 1917, Russian Constructivism was born as most experimental and avant-garde modernity artistic movement. Russian Constructivism played a significant part in relative to Avant-Garde in the beginning of twentieth century and has contributed to a series of artistic movement, it deserves a status befitting its contribution to modem abstract art. Noticing the fact that Constructivist approaches are being attempted in modern architecture with the new rise of Constructivist design theory and increased interest in Constructivism, this thesis explores the design elements characterizing Constructivism in art and architecture To be specific, it suggests the relation of Plastic paradigm in formalistic, elemental and technical aspects and categories into Plastic characteristics. Thereby, the thesis aims to categorize the elements in terms of contradicting two trends of pure plastic and scientific expressions, and to analyze comparatively the related Plastic trends represented in modern space design. The thesis recolonizes that attempts to break out from stereotypes of Constructivism to reinvent itself constantly have contributed to an unconventional forms and new aesthetic standards and have a great impact on idealistic forms in many genres.

  • PDF

Hourglass Control in Rigid-Plastic Finite Element Analysis (강소성 유한요소해석에서 Hourglass Control)

  • Gang, Jeong-Jin;O, Su-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1290-1300
    • /
    • 1996
  • The finite element method, based on rigid-plastic formulation, is widely used to simulate metal forming processes. In order to improve the computational efficiency of the rigid-plastic FEM, one-point integration is used to evaluate the stiffness matrix with four-node rectangular elements and eight-node brick elements. In order to control the hourglass modes, hourglass strain rate components were introduced and included in the effective strain rate definition, Numerical tests have shown that the proposed one-point integration scheme reduces the stiffness matrix evaluation time without deteriorating the convergence behavior of Newton-Raphson method. Simulations of a ring compression, a plane-strain closed-die forging and the three-dimensional spike forging processes were carried out by using the proposed integration method. The simulation results are compared to those obtained by applying the conventional integraiton method in terms of the solution accuracy and computational efficiency.

Roof Crush Analysis Technique Using Simple Model with Plastic Hinge Concepts (소성 힌지를 갖는 단순 보 모델을 이용한 루프 붕괴 해석 기술)

  • 강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.216-222
    • /
    • 1996
  • This paper presents a computational technique to predict roof crush resistance in early design stage of passenger car development. This technique use a simple F.E. model with nonlinear spring elements which represent plastic hinge behavior at weak areas. By assuming actual sections as equivalent simple sections, maximum bending moments which weak areas in major members can stand are theoretically calculated. Results from prediction of roof crush resistance are correlated well with test results.

  • PDF

Elasto-plastic Analysis of Circular Cylindrical Shell under Horizontal Load by Rigid-bodies Spring Model

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.87-92
    • /
    • 2006
  • This paper is a study on the experiment and elasto-plastic discrete limit analysis of reinforced concrete circular cylindrical shell by the rigid-bodies spring model. In the rigid bodies-spring model, each collapsed part or piece of structures at the limiting state of loading is assumed to behave like rigid bodies. The present author propose new discrete elements for elasto-plastic analysis of cylindrical shell structures, that is, a rectangular-shaped cylindrical element and a rhombus-shaped cylindrical element for the improvement and expansion of this rigid-bodies spring model. In this study, it is proposed how this rigid element-bodies spring model can be applied to the elasto-plastic discrete limit analysis of cylindrical shell structures. Some numerical results of elasto-plastic discrete limit analysis and experimental results such as the curve of load-displacement and the yielding and fracturing pattern of circular cylindrical shell under horizontal load are shown.

  • PDF

Development of the injection mold structure for internal gears (내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Y.S.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.78-82
    • /
    • 2008
  • Plastic gears are more and more widely used in many industrial machine elements. Plastic gear has higher properties such as light weight, wear resistance, and vibration absorbing ability than metallic gears. But, in case of using an inaccurate plastic gear, its tooth breakage happen and fatigue life is shortened due to increase of applying load and temperature rising on the tooth flank. Inaccuracy of plastic gears such as pitch circle roundness and tooth profile generates vibration and noise. In this study, an internal plastic gears which is molded by a new injection mold structure are developed. The new mold structure is called the HR3P(hot runner type 3plate mold) that has an improved runner system in order to have good filling balance. As a result from this study, an internal gear with very accurate roundness was developed by using design of experiment.

  • PDF

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.

Acquired Dermoid Cysts within Subcutaneous Scar Tissue (피하 흉터 조직에서 발견된 후천성 유피낭종)

  • Kim, Hyoung Jin;Burm, Jin Sik;Pyon, Jai Kyong;Kim, Yang Woo
    • Archives of Plastic Surgery
    • /
    • v.34 no.4
    • /
    • pp.508-511
    • /
    • 2007
  • Purpose: Dermoid cysts are almost always caused by congenital events. The most widely accepted pathogenesis is that the cysts are dysembryogenetic lesions that arise from ectodermic elements entrapped during the midline fusion. We report a rare case of dermoid cyst, which occurred not congenitally but newly in the subcutaneous scar tissue secondary to trauma. Methods: A 26-year-old man had a deep submental laceration caused by a car accident and got a primary wound closure 16 months ago. There were 18 cm-long submental hypertrophic scar and newly developed palpable masses inside the subcutaneous layer at the center of the scar. Initial impression was an epidermal cyst or a thyroglossal duct cyst. Ultrasonographic finding showed two cystic masses inside the scars at the submental area, but impressed dermoid cysts. The cystic masses were completely removed with W-plasty and histological examination were followed. Results: The histological diagnosis was dermoid cysts which were mainly composed of keratotic squamous epithelium in their inner surface linings and numerous skin appendages such as sebaceous glands, sweat glands, and hair follicles in their cystic lumens histopathologically. During the follow-up period of 25 months, there was no recurrence of any subcutaneous mass in the site of scar. Conclusion: We report a very unusual case of dermoid cysts developed by an acquired cause, considering that the accidental inclusion of deep skin elements caused by a trauma can be a critical origin of dermoid cysts.