• Title/Summary/Keyword: Plastic deformation

Search Result 2,199, Processing Time 0.026 seconds

A Numerical Investigateion of the Effect of Die Friction in ECAP (Equal Channel Angular Pressing) (등통로각압축 (ECAP) 공정에서 다이 마찰 효과에 대한 수치적 연구)

  • 서민홍;김형섭
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • Equal channel angular pressing (ECAP) is a convenient forming process to extrude material without substantial changes in the sample geometry and this deformation process gives rise to produce ultrafine grained materials. The properties of the materials are strongly dependent on the plastic deformation behaviour during ECAP. The major process variables during ECAP are 1) die geometries, such as a channel angle and coner angles, and 2) the processes variables, such as lubrication and deformation speed. In this study, the plastic deformation behaviour of materials during the ECAP has been theoretically analysed by the finite element method (FEM). The effect of the die friction on the plastic deformation behaviour during the pressing is discussed by means of FEM calculations.

  • PDF

Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy

  • Ullah, Himayat;Ullah, Baseer;Muhammad, Riaz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Shot peening is a cold surface treatment employed to induce residual stress field in a metallic component beneficial for increasing its fatigue strength. The experimental investigation of parameters involved in shot peening process is very complex as well as costly. The most attractive alternative is the explicit dynamics finite element (FE) analysis capable of determining the shot peening process parameters subject to the selection of a proper material's constitutive model and numerical technique. In this study, Ansys / LS-Dyna software was used to simulate the impact of steel shots of various sizes on an aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The influence of shot velocity and size on the plastic deformation, compressive residual stress and force-time response were investigated. The results exhibited that increasing the shot velocity and size resulted in an increase in plastic deformation of the aluminium target. However, a little effect of the shot velocity and size was observed on the magnitude of target's subsurface compressive residual stress. The obtained results were close to the published ones, and the numerical models demonstrated the capability of the method to capture the pattern of residual stress and plastic deformation observed experimentally in aluminium alloys. The study can be quite helpful in determining and selecting the optimal shot peening parameters to achieve specific level of plastic deformation and compressive residual stress in the aluminium alloy parts especially compressor blades.

An Analytical Study to Reduce Plastic Deformation in Intersection Pavements (교차로 포장 소성변형 저감을 위한 해석적 연구)

  • Choi, Jun-Seong;Lee, Kang-Hun;Kwon, Soo-Ahn;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • PURPOSES : Plastic deformation is frequently made in intersection asphalt pavement at its early age due to deceleration and stoppage of vehicles. This study has been performed to provide a mechanistic basis for reasonable selection of paving method to minimize the plastic deformation at intersection. METHODS : Pavement layer, temperature, traffic volume of the intersections managed by the Daejeon Regional Construction and Management Administration were collected to calculate asphalt dynamic modulus with pavement depth by using a prediction equation suggested by the Korean pavement design guide. Performance of ordinary dense-graded asphalt pavement, polymer modified asphalt pavement, and fiber reinforced asphalt pavement was analyzed by finite element method and the results were used in a performance model to predict the plastic deformation. RESULTS : In aspect of performance, the three paving methods were usable under low traffic while the fiber reinforced asphalt pavement was the most suitable under heavy traffic. CONCLUSIONS : Reasonable paving method suitable for traffic characteristics in the intersection might be decided by considering economic feasibility.

Plastic Deformation Capacity of Steel Beam-to-Column Connection under Long-duration Earthquake

  • Yamada, Satoshi;Jiao, Yu;Narihara, Hiroyuki;Yasuda, Satoshi;Hasegawa, Takashi
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.231-241
    • /
    • 2014
  • Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material's yield strength/ratio, the beam's moment gradient, and loading history are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam's plastic deformation capacity through analysis is introduced in this paper. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tends to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam's behavior under standard incremental loading protocols recommended by respective countries. In this paper, the plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.

On the Stability of the Permanently Bent Mini-plate in Reconstructive Surgery (플레이트의 소성변형 과정이 재건술에서 플레이트 안정성에 미치는 영향)

  • Park, Si Myung;Lee, Deukhee;Noh, Gunwoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.234-241
    • /
    • 2016
  • Conventional bent plate used in mandibular reconstruction surgery needs safety verification since its mechanical properties are changed due to the plastic deformation during the bending process. In this study we investigate stability of the plastically deformed plate and the plate with the same shape without plastic deformation through the finite element analysis(FEA). First we simulate the process of plate bending to fit the defect in patient. Then, the other plate is modelled to represent a customized plate with the same shape of the plastically deformed one, but without any residual stresses from plastic deformation. After binding these plates to the mandible, we conduct the masticatory simulation. Finally, we compare the resulting Von Mises stress of the customized plate and of the bent plate. The bent plate shows much higher stress than the customized one due to the residual stresses form the bending process. The study shows that plastic deformation in the plate may decrease the safety of the reconstruction surgery.

(A Study on the Thermal Deformation of Circumferential Welding by Thermal Elasto-Plastic Analysis.) (열탄소성 해석에 의한 원주용접 열변형에 대한 연구)

  • 김용섭;정충훈;김백현
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.238-246
    • /
    • 2001
  • Residual stresses and thermal deformation of a structure due to welding are very imfortant factors for a weld design. It has been carried therretical analysis to invesitigate influence of heat flux to residual stresses and thermal deformation producted by curcumferential welding. Temperature,stresses and deformationn are obtain as a function of circumferentisl drgree and distance from welding center line. These result can applicate to predict and remove the deformation or residual stresses built up by welding.

  • PDF

A study on the restoring method of the abrasives cylinder liner of cast iron using thermal plastic deformation technique (TPD법에 의해 재생된 실린더 라이너의 야금학적 고찰)

  • 이광렬;김종호;김영식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.141-146
    • /
    • 2002
  • The cast iron cylinder liner of the marine engine must be scrapped after its inner surface was definitely worn out due to the friction between the surface and piston ring during the operating. In this research, the restoring method of the worn out cast iron cylinder liner are discussed based on the results of experimental work of the thermal plastic deformation technique.

  • PDF

Activation Enthalpies for Plastic Deformation

  • Chang-Hong Kim;Tai-Kyue Ree
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 1980
  • Activation energies for plastic deformation calculated from traditional phenomenological equations have been criticized frequently since the values are different by authors, and also by experimental conditions. The reasons of different activation enthalpies are clarified in this study. Our method for calculating activation enthalpies based on the authors' theory of plastic deformation was presented and discussed. The method was applied to various cases of alloys, the calculated activation enthalpies are listed and compared with the activation energies obtained by the traditional methods in order to show the reasonableness of our method. The physical meaning of the activation enthalpies which we found was clarified.

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

A Study on the Material Properties of Grey Cast Iron for Cylinder Liner Treated by Thermo Plastic Deformation Process (열소성변형공정을 시행한 회주철제 실린더 라이너의 재료물성에 관한 연구)

  • Kim Tae-Hyoung;Kim Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.671-677
    • /
    • 2005
  • In internal combustion engines the usual material for the cylinder liner is because of its good wear resistance Apparently this wear resistance arises from the at iron to form a hard glazed surface when under sliding friction. When the cylinder liner wear limits, it shall be replace with new one according to the classification soci manufacturer's standards. However, adoption of alternative repairing method such a metalizing, thermo plastic deformation process became inevitable taking enormous cost renewal into consideration. In this paper. the material properties of cylinder liner of grey discussed on the basis of the results of experimental work of the thermo plastic deformation the worn out cylinder liner made of grey cast iron.