• 제목/요약/키워드: Plastic damage

검색결과 821건 처리시간 0.028초

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

Uni-axial behavior of energy dissipative steel cushions

  • Ozkaynak, Hasan;Khajehdehi, Arastoo;Gullu, Ahmet;Azizisales, Faraz;Yuksel, Ercan;Karadogan, Faruk
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.661-674
    • /
    • 2018
  • Seismic excitations may impart a significant amount of energy into structures. Modern structural design attitudes tend to absorb some part of this energy through special dissipaters instead of heavy plastic deformations on the structural members. Different types of dissipater have been generated and utilized in various types of structures in last few decades. The expected earthquake damage is mainly concentrated on these devices and they may be replaced after earthquakes. In this study, a low-cost device called energy dissipative steel cushion (EDSC) made of flat mild steel was developed and tested in the Structural and Earthquake Engineering Laboratory (STEELab) of Istanbul Technical University (ITU). The monotonic and cyclic tests of EDSC were performed in transversal and longitudinal directions discretely. Very large deformation capability and stable hysteretic behavior are some response properties observed from the tests. Load vs. displacement relations, hysteretic energy dissipation properties as well as the closed form equations to predict the behavior parameters are presented in this paper.

감육배관의 유한요소해석에 의한 변형 및 강도 평가 (Evaluation of Deformation and Strength of Wall Thinne Pipes by Finite Element Analysis)

  • 남기우;안석환;이수식;김진욱;윤자문
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.65-70
    • /
    • 2005
  • Fracture behavior and pipe strength are very important to the integrity of energy plants, ocean structures, and so forth. The pipes of energy plants and ocean structures are subject to local wall thinning, resulting from severe erosion-corrosion damage. Recently, the effects of local wall thinning on fracture strength and fracture behavior of piping systems have been the focus of many studies. In this paper, the elasto-plastic analysis is performed by FE code ANSYS on straight pipes with wall thinning. We evaluated the failure mode, fracture strength and fracture behavior, using FE analysis. Also, the effect of the axial strain on deformations and failure modes was estimated by FE analysis.

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola;Camata, Guido;Benedetti, Andrea;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.29-38
    • /
    • 2017
  • Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.

CFRP 보강 콘크리트 구조물의 PZT센서 기반 구조 건전성 모니터링 (PZT Sensor-based Structural Health Monitoring for CFRP Laminated Concrete Structures)

  • 류성찬;김주원;이창길;박승희;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권5호
    • /
    • pp.72-78
    • /
    • 2010
  • CFRP보강공법은 구조물에 내하력을 증가시키기 위해 사용되고 있으며 실제 교량에 적용빈도가 높고 연구 활용성에 대한 기대가 큰 공법이다. CFRP로 보강된 콘크리트 구조물은 외부에 에폭시 등으로 접착된 CFRP로 인하여 휨파괴 및 전단파괴 외에 부착파괴가 추가적으로 발생하게 되며 이러한 부착파괴가 전체거동을 지배하게 되는 경우가 대부분이며, 취성파괴를 유발하게 된다. 따라서 이러한 CFRP 부착파괴에 대한 모니터링은 매우 중요한 의미를 갖는다. 본 논문에서는 국부적인 손상 파악에 유리한 PZT센서를 이용한 임피던스 기반 손상검색 방법을 사용하여 콘크리트 균열과 CFRP 부착파괴 모니터링에 대한 적용가능성을 검증해 보았다.

Mechanical Behaviors of CFRP Laminate Composites Reinforced with Aluminum Oxide Powder

  • Kwon, Oh-Heon;Yun, Yu-Seong;Ryu, Yeong-Rok
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.166-173
    • /
    • 2014
  • In this study, a laminated composite material with dispersing aluminum oxide powder between the CFRP laminate plies, and also CFRP composites without aluminium oxide powder were fabricated for Mode I experiments using the DCB specimen and a tensile test. The behavior of the crack and the change of the interfacial fracture toughness were evaluated. Also in order to evaluate the damage mechanism for the crack extension, the AE sensor on the surface of the DCB test specimen was attached. AE amplitude was estimated for CFRP-alumina and CFRP composite. And the fracture toughness was evaluated by the stress intensity factor and energy release rate. The results showed that an unstable crack was propagated rapidly in CFRP composite specimen along with the interface, but crack propagation in CFRP-alumina specimen was relatively stable. From results, we show that aluminium oxide powder spreaded uniformly in the interface of the CFRP laminate carried out the role for preventing the sudden crack growth.

소형 펀치 시험에 의한 강용접부의 파괴강도 평가에 관한 연구 1

  • 유대영;정세희;임재규
    • Journal of Welding and Joining
    • /
    • 제7권3호
    • /
    • pp.28-35
    • /
    • 1989
  • It was reported that the toughness for welded region was influenced by various factors such as the gradient for prior austenite grain size, the variation of microhardness and the characteristic microstructure depending on distance from the fusion boundary. Therefore, in order to evaluate the fracture strength of the weldment in which the microstructures change continuously, it is important to assess the peculiar strength of each microstructure in welded region. It was known that the small punch(SP) test technique which was originally developed to study the irradiation damage effect for the structures of nuclear power plant was also useful to investigate the strength evaluating of nonhomogeneous materials. In this paper, by means of a small punch test technique the possibility of evaluating strength of parent and welded region in SS41 and SM53B steels was investigated. The obtained results are summerized as follows: 1) The small punch test which showed markedly the ductile-brittle transition behavior in this experiment may be applied to evaluation for the fracture strength of welded region. 2) It was shown that the ductile-brittle regime lied in Region III(plastic membrane stretching region) of the flow characteristics observed in SP test. 3) The SP test technique which shows a more precipitous energy change transition behavior than the other test technique is able to estimate the more precise transition temperature. 4) It could be seen that in comparision with the structure of parent the structure of weld HAZ in SS41 steel was improved while it in SM53B steel was deteriorated.

  • PDF

Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars

  • Ghasemitabar, Amirhosein;Rahmdel, Javad Mokari;Shafei, Erfan
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.293-302
    • /
    • 2020
  • Connections play a significant role in strength of structures against earthquake-induced loads. According to the post-seismic reports, connection failure is a cause of overall failure in reinforced concrete (RC) structures. Connection failure results in a sudden increase in inter-story drift, followed by early and progressive failure across the entire structure. This article investigated the cyclic performance and behavioral improvement of shape-memory alloy-based connections (SMA-based connections). The novelty of the present work is focused on the effect of shape memory alloy bars is damage reduction, strain recoverability, and cracking distribution of the stated material in RC moment frames under seismic loads using 3D nonlinear static analyses. The present numerical study was verified using two experimental connections. Then, the performance of connections was studied using 14 models with different reinforcement details on a scale of 3:4. The response parameters under study included moment-rotation, secant stiffness, energy dissipation, strain of bar, and moment-curvature of the connection. The connections were simulated using LS-DYNA environment. The models with longitudinal SMA-based bars, as the main bars, could eliminate residual plastic rotations and thus reduce the demand for post-earthquake structural repairs. The flag-shaped stress-strain curve of SMA-based materials resulted in a very slight residual drift in such connections.

터보펌프 터빈 로터의 슈라우드 스플릿이 성능에 미치는 영향 (The performance effect of shroud split for turbopump turbine rotor)

  • 이항기;정은환;윤석환;박편구;김진한
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.117-122
    • /
    • 2012
  • 액체로켓 엔진의 시동과 종료 시, 터빈에 가해지는 열충격을 완화시키기 위해 초음속 충동형 터빈로터의 일체형 슈라우드를 여러 조각으로 분할하는 방법을 고안하였다. 구조해석 수행결과 슈라우드 분할은 동익의 허브와 팁에 나타나는 소성변형량을 크게 줄일 수 있는 것으로 나타났다. 그러나 슈라우드 분할은 의도하지 않은 누설손실로 인해 성능손실이 불가피하며 이에 대한 정량적인 성능감소를 측정하기 위해 다양한 슈라우드 분할 형상에 대해 시험을 수행하였다. 연구대상 터빈의 경우 슈라우드 분할 수를 최대로 할 경우 설계점 효율은 2.65% 비율로 감소하는 것으로 나타났다.

  • PDF

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

  • Dzolev, Igor M.;Cvetkovska, Meri J.;Ladinovic, Dorde Z.;Radonjanin, Vlastimir S.
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.637-647
    • /
    • 2018
  • Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class M. Thermal and structural response are obtained using a commercially available software ANSYS. Temperature-dependent nonlinear thermal and mechanical properties are adopted according to Eurocode standards, with the application of constitutive model for the triaxial behaviour of concrete with a smeared crack approach. Discrete modelling of concrete and reinforcement has enabled monitoring of the behaviour at a global, as well as at a local level, providing information on the level of damage occurring during fire. Critical regions in frame structures are identified and assessed, based on temperatures, displacements, variations of internal forces magnitudes and achieved plastic deformations of main reinforcement bars. Parametric analyses are conducted for different fire scenarios and different types of concrete aggregate to determine their effect on global deformations of frame structures. According to analyses results, the three-dimensional finite element model can be used to evaluate the insulation and mechanical resistance criteria of reinforced concrete frame structures subjected to nominal fire curves.