• Title/Summary/Keyword: Plastic Working

Search Result 175, Processing Time 0.029 seconds

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.

Mastectomy in female-to-male transgender patients: A single-center 24-year retrospective analysis

  • Kuhn, Shafreena;Keval, Seirah;Sader, Robert;Kuenzlen, Lara;Kiehlmann, Marcus;Djedovic, Gabriel;Bozkurt, Ahmet;Rieger, Ulrich Michael
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.433-440
    • /
    • 2019
  • Background Mastectomy in male transgender patients is an important (and often the first) step toward physical manhood. At our department, mastectomies in transgender patients have been performed for several decades. Methods Recorded data were collected and analyzed for all male transgender patients undergoing mastectomy over a period of 24 years at our department. Results In total, 268 gender-reassigning mastectomies were performed. Several different mastectomy techniques (areolar incision, n=172; sub-mammary incision, n=96) were used according to patients' habitus and breast features. Corresponding to algorithms presented in the current literature, certain breast qualities were matched with a particular mastectomy technique. Overall, small breasts with marginal ptosis and good skin elasticity allowed small areolar incisions as a method of access for glandular removal. In contrast, large breasts and those with heavy ptosis or poor skin elasticity often required larger incisions for breast amputation. The secondary correction rate (38%) was high for gender reassignment mastectomy, as is also reflected by data in the current literature. Secondary correction frequently involved revision of chest wall recontouring, suggesting inadequate removal of the mammary tissue, as well as scar revision, which may reflect intense traction during wound healing (36%). Secondary corrections were performed more often after using small areolar incision techniques (48%) than after using large sub-mammary incisions (21%). Conclusions Choosing the suitable mastectomy technique for each patient requires careful individual evaluation of breast features such as size, degree of ptosis, and skin elasticity in order to maximize patient satisfaction and minimize secondary revisions.

The Studying on Drum-type Hill-drop Unit

  • Zhang, Xuejun;Yang, Yin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.996-998
    • /
    • 1996
  • The drum-type hill-drop unit, an important working device of the plastic -film-covered hill planter, can finish filling and separating seed precisely, perforating film and holing , and its seeding depth and spacing are stability . The unit is applied to hole seed many crops, for example, cotton, corn , soybean, etc. The drum-type hill-drop unit(DHU) , the key work unit to the plastic film-covered planter, mainly consists of distributor box , seeding parts, hole forming unit and drum , It can be operated to accomplish seeds distributing, hole forming , plastic film perforating . Moreover , its inner cavity can be used as seed box.

  • PDF

Safety Evaluation for Restoration Process on Plastic Deformed Cylindrical Beam (소성변형된 실린더형 빔의 복원 안전성 평가)

  • Park Chi-Yong;Boo Myung-hwan
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.7-12
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore a damaged part of large machinery or structure which is installed in the hazard working place. In this paper, to evaluate the safety of plastic deformed cylindrical beam a finite element technique has been used. The variations of residual stresses on the process of damaging and restoring for surfaces and cross-sections have been examined. The results show that the maximum von Mises stresses occur outer cylinder surfaces of boundary between cylindrical beam support md cylindrical beam when deformation procedure and restoring force is applied. The maximum residual stress remains 158.6MPa in the inner wall and this value correspond to $53\%$ of yield stress then restoration procedure is finished.

Properties of IZTO Thin Films Deposited on PEN Substrates with Different Working Pressures

  • Park, Jong-Chan;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.224-227
    • /
    • 2015
  • In this work, the properties of Indium-Zinc-Tin-Oxide (IZTO) thin films, deposited on polyethylene naphthalate (PEN) with a $SiO_2$ buffer layer, were analyzed with different working pressures. After depositing the $SiO_2$ buffer layer on PEN substrates by plasma-enhanced chemical vapor deposition (PECVD), the IZTO thin films were deposited by RF magnetron sputtering with 1 to 7-mTorr working pressure. All the IZTO thin films show an amorphous structure, regardless of the working pressure. The best morphological, electrical, and optical properties are obtained at 3-mTorr working pressure, with a surface roughness of 2.112-nm, a sheet resistance of $8.87-{\Omega}/sq$, and a transmittance at 550-nm of 88.44%. These results indicate that IZTO thin films deposited on PEN have outstanding electrical and optical properties, and the PEN plastic substrate is a suitable material for display devices.

Design of Induction Heating Coil for Automatic Hull Forming System

  • Ryu, Hyun-su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.360-366
    • /
    • 2018
  • In shipyards hull forming is performed by the line heating method using a gas torch and by cold treatment using a roll-press. However, this forming process has some issues, such as difficulties in controlling and accurately estimating the amount of the heat input, as well as a harsh working environment due to exposure to loud noises and air pollution. The induction heating method, which is introduced in this paper, exhibits good control and allows for the estimation of precise heat input. Also, workers can carry out the induction heating in a comfortable working environment. In this research, the induction heating simulation, which consists of electro-magnetic, heat transfer and thermal elasto-plastic analysis, was developed and modified through induction heating experiments. Finally, the effective heating coil was designed for the automatic hull forming system based on the results of induction heating simulation. For the purposes of a future study, if an algorithm to obtain optimal working conditions is developed, automatic systems for hull forming can then be constructed.

Safety Engineering Technique By Industry on Small & Medium Industry (중소기업의 업종별 안전공학 기술)

  • Kim, Dae-Sig
    • Journal of Industrial Convergence
    • /
    • v.2 no.2
    • /
    • pp.31-46
    • /
    • 2004
  • The ratio of industrial injury in Korea is higher 2~4 times than advanced nations like Japan and Singapore, because the industrial injuries in small-medium industry are higher than large size industry. The investment ability is insufficient for working conditions and prevention of the industrial injuries in the small & medium industry. The industrial safety management of machinery manufacturing for transportation, chemical factory, textile product manufacturing, wire & circuit products for computer, plastic goods manufacturing, and metal products manufacturing was investigated. Therefore, the purpose of the paper is to recognize the seriousness of the industrial injuries, understand product, layout, and machinery, and working conditions, etc., and indicate safety engineering techniques for improvement of quality and productivity under this safety working conditions.

  • PDF

A Study of Characteristic correlation go after the variable of shear process design for Carbon Tool Steel (II) (탄소공구강의 전단설계 변수에 따른 특성 상관관계 연구 (II))

  • Ryu, Gi-Ryoung;Ro, Hyun-Cho;Song, Jae-Son;Park, Chun-dal;Youn, Il-chae
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • The sheet metal forming proceccing is very important and indispensable in the automotive industry because the accuracy of prsee worked parts is directly related to the automotive quality. But when making mold it is difficult and expensive to modify mold. mold design technology is a critical technology in press plastic working. When design the mold there are lots of variables in press plastic working according to worked material, mold materials, conditions of heat treatment, clearance and so on. Abrasion of mold depends on these kind of conditions and sheared surface which is crucial for quality of product also depends on them. In this study, we conduct research on abrasion loss of mold according to 8, 10 and 12% of clearance for thickness of 1.0mm of worked material out of mold design variables of the products whose worked materials are high carbon steel and carbon tool steel by a practical experiment and perform a comparative evaluation of difference of abrasion loss mold with the alloy tool steel (STD11) and Tungsten Carbide (WC).

  • PDF

Development of Functional Fatigue Clothes for Plastic Greenhouse Workers (서열스트레스 경감을 위한 비닐하우스 작업복 개발)

  • Hwang, Kyoung-Sook;Kim, Do-Hee;Chae, Hye-Seon
    • The Korean Journal of Community Living Science
    • /
    • v.21 no.4
    • /
    • pp.551-558
    • /
    • 2010
  • It is a normal circumstance to have high temperature and high humidity in Greenhouses even though these climates are changed by the area, season, climates, the size of the greenhouse, and the crops being raised. Workers in the greenhouses have complained about their uncomfortable work environment and discomfort from the hot conditions, including sunburn. The farmers' ailments are not significantly different between those working in the in greenhouses and those working in the fields. The Farmers' syndrome was almost two times higher for women than those of men for greenhouse workers. This study was developed for functional fatigue clothes for plastic greenhouses which are known for high temperatures and humidity. The ergonomic function and thermal comforts of fatigue clothes were evaluated in the climatic chamber($30.0^{\circ}C$, 70.0%R.H.). The current fatigue clothes which are made of cotton or nylon were purchased at the market. The developed clothes are made of highly absorbent and high speed drying polyester. And these fabrics have excellent elasticity. In this study, the functional fatigue clothes were designed with longsleeved sport shirts and Full length pants. Tre, Tsk, Hcl, HR and the personal subjective sensations such as heat, humidity, and comfortableness were significantly lower when subjects wore the developed clothes made with polyester than the previous attire.

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.